Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 97(6): e0041223, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37255475

RESUMEN

Pseudorabies virus (PRV) is a double-stranded DNA virus that causes Aujeszky's disease and is responsible for economic loss worldwide. Transmembrane protein 41B (TMEM41B) is a novel endoplasmic reticulum (ER)-localized regulator of autophagosome biogenesis and lipid mobilization; however, the role of TMEM41B in regulating PRV replication remains undocumented. In this study, PRV infection was found to upregulate TMEM41B mRNA and protein levels both in vitro and in vivo. For the first time, we found that TMEM41B could be induced by interferon (IFN), suggesting that TMEM41B is an IFN-stimulated gene (ISG). While TMEM41B knockdown suppressed PRV proliferation, TMEM41B overexpression promoted PRV proliferation. We next studied the specific stages of the virus life cycle and found that TMEM41B knockdown affected PRV entry. Mechanistically, we demonstrated that the knockdown of TMEM41B blocked PRV-stimulated expression of the key enzymes involved in lipid synthesis. Additionally, TMEM41B knockdown played a role in the dynamics of lipid-regulated PRV entry-dependent clathrin-coated pits (CCPs). Lipid replenishment restored the CCP dynamic and PRV entry in TMEM41B knockdown cells. Together, our results indicate that TMEM41B plays a role in PRV infection via regulating lipid homeostasis. IMPORTANCE PRV belongs to the alphaherpesvirus subfamily and can establish and maintain a lifelong latent infection in pigs. As such, an intermittent active cycle presents great challenges to the prevention and control of PRV disease and is responsible for serious economic losses to the pig breeding industry. Studies have shown that lipids play a crucial role in PRV proliferation. Thus, the manipulation of lipid metabolism may represent a new perspective for the prevention and treatment of PRV. In this study, we report that the ER transmembrane protein TMEM41B is a novel ISG involved in PRV infection by regulating lipid synthesis. Therefore, our findings indicate that targeting TMEM41B may be a promising approach for the development of PRV vaccines and therapeutics.


Asunto(s)
Herpesvirus Suido 1 , Proteínas de la Membrana , Seudorrabia , Replicación Viral , Animales , Herpesvirus Suido 1/fisiología , Interferones/metabolismo , Lípidos , Porcinos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Plant Mol Biol ; 112(6): 309-323, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37378835

RESUMEN

Aerial root mucilage can enhance nitrogen fixation by providing sugar and low oxygen environment to the rhizosphere microbiome in Sierra Mixe maize. Aerial root mucilage has long been documented in sorghum (Sorghum bicolor), but little is known about the biological significance, genotypic variation, and genetic regulation of this biological process. In the present study, we found that a large variation of mucilage secretion capacity existed in a sorghum panel consisting of 146 accessions. Mucilage secretion occurred primarily in young aerial roots under adequately humid conditions but decreased or stopped in mature long aerial roots or under dry conditions. The main components of the mucilage-soluble were glucose and fructose, as revealed by sugar profiling of cultivated and wild sorghum. The mucilage secretion capacity of landrace grain sorghum was significantly higher than that of wild sorghum. Transcriptome analysis revealed that 1844 genes were upregulated and 2617 genes were downregulated in mucilage secreting roots. Amongst these 4461 differentially expressed genes, 82 genes belonged to glycosyltransferases and glucuronidation pathways. Sobic.010G120200, encoding a UDP-glycosyltransferase, was identified by both GWAS and transcriptome analysis as a candidate gene, which may be involved in the regulation of mucilage secretion in sorghum through a negative regulatory mechanism.


Asunto(s)
Sorghum , Sorghum/genética , Sorghum/metabolismo , Transcriptoma , Azúcares/metabolismo , Estudio de Asociación del Genoma Completo , Polisacáridos/metabolismo , Perfilación de la Expresión Génica , Grano Comestible/genética , Variación Genética
3.
BMC Plant Biol ; 22(1): 226, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501691

RESUMEN

BACKGROUND: Kelch repeat F-box (KFB) proteins play vital roles in the regulation of multitudinous biochemical and physiological processes in plants, including growth and development, stress response and secondary metabolism. Multiple KFBs have been characterized in various plant species, but the family members and functions have not been systematically identified and analyzed in potato. RESULTS: Genome and transcriptome analyses of StKFB gene family were conducted to dissect the structure, evolution and function of the StKFBs in Solanum tuberosum L. Totally, 44 StKFB members were identified and were classified into 5 groups. The chromosomal localization analysis showed that the 44 StKFB genes were located on 12 chromosomes of potato. Among these genes, two pairs of genes (StKFB15/16 and StKFB40/41) were predicted to be tandemly duplicated genes, and one pair of genes (StKFB15/29) was segmentally duplicated genes. The syntenic analysis showed that the KFBs in potato were closely related to the KFBs in tomato and pepper. Expression profiles of the StKFBs in 13 different tissues and in potato plants with different treatments uncovered distinct spatial expression patterns of these genes and their potential roles in response to various stresses, respectively. Multiple StKFB genes were differentially expressed in yellow- (cultivar 'Jin-16'), red- (cultivar 'Red rose-2') and purple-fleshed (cultivar 'Xisen-8') potato tubers, suggesting that they may play important roles in the regulation of anthocyanin biosynthesis in potato. CONCLUSIONS: This study reports the structure, evolution and expression characteristics of the KFB family in potato. These findings pave the way for further investigation of functional mechanisms of StKFBs, and also provide candidate genes for potato genetic improvement.


Asunto(s)
Solanum tuberosum , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Estrés Fisiológico
4.
Mol Biol Rep ; 49(6): 4683-4697, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35366758

RESUMEN

BACKGROUND: The phosphatidylethanolamine-binding protein (PEBP) gene family is involved in regulating many plant traits. Genome-wide identification of PEPB members and knowledge of their responses to heat stress may assist genetic improvement of potato (Solanum tuberosum). METHODS AND RESULTS: We identified PEBP gene family members from both the recently-updated, long-reads-based reference genome (DM v6.1) and the previous short-reads-based annotation (PGSC DM v3.4) of the potato reference genome and characterized their heat-induced gene expression using RT-PCR and RNA-Seq. Fifteen PEBP family genes were identified from DM v6.1 and named as StPEBP1 to StPEBP15 based on their locations on 6 chromosomes and were classified into FT, TFL, MFT, and PEBP-like subfamilies. Most of the StPEBP genes were found to have conserved motifs 1 to 5. Tandem or segmental duplications were found between StPEBP genes in seven pairs. Heat stress induced opposite expression patterns of certain FT and TFL members but involving different members in leaves, roots and tubers. CONCLUSION: The long-reads-based genome assembly and annotation provides a better genomic resource for identification of PEBP family genes. Heat stress tends to decrease FT gene activities but increases TFL gene activities, but this opposite expression involves different FT/TFL pairs in leaves, roots, and tubers. This tissue-specific expression pattern of PEBP members may partly explain why different potato organs differ in their sensitivities to heat stress. Our study provides candidate PEBP family genes and relevant information for genetic improvement of heat tolerance in potato and may help understand heat-induced responses in other plants.


Asunto(s)
Solanum tuberosum , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Respuesta al Choque Térmico/genética , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estrés Fisiológico/genética
5.
Plant Biotechnol J ; 19(4): 731-744, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33095976

RESUMEN

Celery (Apium graveolens L. 2n = 2x = 22), a member of the Apiaceae family, is among the most important and globally grown vegetables. Here, we report a high-quality genome sequence assembly, anchored to 11 chromosomes, with total length of 3.33 Gb and N50 scaffold length of 289.78 Mb. Most (92.91%) of the genome is composed of repetitive sequences, with 62.12% of 31 326 annotated genes confined to the terminal 20% of chromosomes. Simultaneous bursts of shared long-terminal repeats (LTRs) in different Apiaceae plants suggest inter-specific exchanges. Two ancestral polyploidizations were inferred, one shared by Apiales taxa and the other confined to Apiaceae. We reconstructed 8 Apiales proto-chromosomes, inferring their evolutionary trajectories from the eudicot common ancestor to extant plants. Transcriptome sequencing in three tissues (roots, leaves and petioles), and varieties with different-coloured petioles, revealed 4 and 2 key genes in pathways regulating anthocyanin and coumarin biosynthesis, respectively. A remarkable paucity of NBS disease-resistant genes in celery (62) and other Apiales was explained by extensive loss and limited production of these genes during the last ~10 million years, raising questions about their biotic defence mechanisms and motivating research into effects of chemicals, for example coumarins, that give off distinctive odours. Celery genome sequencing and annotation facilitates further research into important gene functions and breeding, and comparative genomic analyses in Apiales.


Asunto(s)
Apium , Apium/genética , Genes de Plantas , Cariotipo , Fitomejoramiento , Verduras
6.
Plant Biotechnol J ; 18(6): 1444-1456, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31799788

RESUMEN

Coriander (Coriandrum sativum L. 2n = 2x = 22), a plant from the Apiaceae family, also called cilantro or Chinese parsley, is a globally important crop used as vegetable, spice, fragrance and traditional medicine. Here, we report a high-quality assembly and analysis of its genome sequence, anchored to 11 chromosomes, with total length of 2118.68 Mb and N50 scaffold length of 160.99 Mb. We found that two whole-genome duplication events, respectively, dated to ~45-52 and ~54-61 million years ago, were shared by the Apiaceae family after their split from lettuce. Unbalanced gene loss and expression are observed between duplicated copies produced by these two events. Gene retention, expression, metabolomics and comparative genomic analyses of terpene synthase (TPS) gene family, involved in terpenoid biosynthesis pathway contributing to coriander's special flavour, revealed that tandem duplication contributed to coriander TPS gene family expansion, especially compared to their carrot counterparts. Notably, a TPS gene highly expressed in all 4 tissues and 3 development stages studied is likely a major-effect gene encoding linalool synthase and myrcene synthase. The present genome sequencing, transcriptome, metabolome and comparative genomic efforts provide valuable insights into the genome evolution and spice trait biology of Apiaceae and other related plants, and facilitated further research into important gene functions and crop improvement.


Asunto(s)
Coriandrum , Mapeo Cromosómico , Emociones , Genoma de Planta , Plantas , Transcriptoma
7.
Mol Biol Rep ; 47(6): 4311-4321, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32488578

RESUMEN

Heat stress has a severe impact on potato growth and tuberization process, always resulting in the decrease of tuber yield and quality. Therefore, it is of great significance for potato breeding to illuminate the mechanism of heat stress on potato and explore heat resistant genes. In this study, two cDNA libraries from normal potato leaves (20 °C day/18 °C night) and potato leaves with 3 days of heat treatment (35 °C day/28 °C night) were constructed respectively. Totally, 1420 differentially expressed genes (DEGs) were identified. The expression patterns of 12 randomly selected genes detected using droplet digital PCR agreed with the sequencing data. Gene ontology analysis showed that these DEGs were clustered into 49 different GO types, reflecting the functional diversity of the heat stress response genes. The results of KEGG pathway enrichment showed the potential biological pathways in which the DEGs were involved, indicating that these pathways may be involved in heat tolerance regulation. Most potato heat transcription factors (StHsfs) and heat shock proteins (StHsps) were not expressed efficiently based on expression profile of these DEGs. StHsp26-CP and StHsp70 were markedly increased after 3 days of heat treatment. These data will be useful for further understanding the molecular mechanisms of potato plant tolerance to heat stress and provide a basis for breeding heat-tolerance varieties.


Asunto(s)
Respuesta al Choque Térmico/genética , Solanum tuberosum/genética , Sequías , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Biblioteca de Genes , Ontología de Genes , Genes de Plantas/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Transcriptoma/genética
8.
Theor Appl Genet ; 132(1): 205-216, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30390131

RESUMEN

KEY MESSAGE: Starch contents were found to be positively correlated with organelle/nuclear DNA ratios, suggesting that these ratios are involved in starch accumulation and may serve as a target trait in genetic engineering and a biomarker in breeding for improving the dry matter and starch production in potato. Starch is the main dry matter component of various staple food crops, including potato. Starch synthesis and accumulation is in plastids, uses sugar, consumes cellular energy, and requires active expression of starch synthesis genes. We hypothesized that the plastid/nuclear DNA ratios and mitochondrial/nuclear DNA ratios are involved in this accumulation. We analyzed the dry mater, starch, plastid DNA, mitochondrial DNA, and nuclear DNA in tuber stem ends and tuber bud ends in two potato cultivars and verified the results using whole tubers in nine potato cultivars. Dry matter contents (DMC) and organelle/nuclear DNA ratios increased rapidly during tuber bulking. DMC and starch contents were greater at the tuber stem ends than at the tuber bud ends. Both the comparisons between tuber ends and among whole tubers indicated that DMC and starch contents were positively correlated with both plastid/nuclear DNA ratios and mitochondrial/nuclear DNA ratios. The results suggest that pt/nuc and mt/nuc DNA ratios are important and may serve as a biomarker in selection, genetic engineering, and cytoplasm manipulation, for dry matter and starch accumulation in potato.


Asunto(s)
ADN de Cloroplastos/genética , ADN Mitocondrial/genética , Tubérculos de la Planta/metabolismo , Solanum tuberosum/genética , Almidón/biosíntesis , Núcleo Celular/genética , ADN de Plantas/genética , Solanum tuberosum/metabolismo
9.
Physiol Plant ; 166(2): 628-645, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30051480

RESUMEN

Adverse environmental stresses affect plant growth and crop yields. Sheepgrass (Leymus chinensis (Trin.) Tzvel), an important forage grass that is widely distributed in the east of Eurasia steppe, has high tolerance to extreme low temperature. Many genes that respond to cold stress were identified in sheepgrass by RNA-sequencing, but more detailed studies are needed to dissect the function of those genes. Here, we found that LcFIN2, a sheepgrass freezing-induced protein 2, encoded a chloroplast-targeted protein. Expression of LcFIN2 was upregulated by freezing, chilling, NaCl and abscisic acid (ABA) treatments. Overexpression of LcFIN2 enhanced the survival rate of transgenic Arabidopsis after freezing stress. Importantly, heterologous expression of LcFIN2 in rice exhibited not only higher survival rate but also accumulated various soluble substances and reduced membrane damage in rice under chilling stress. Furthermore, the chlorophyll content, the quantum photochemistry efficiency of photosystem II (ΦPSII), the non-photochemical quenching (NPQ), the net photosynthesis rate (Pn) and the expression of some chloroplast ribosomal-related and photosynthesis-related genes were higher in the transgenic rice under chilling stress. These findings suggested that the LcFIN2 gene could potentially be used to improve low-temperature tolerance in crops.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Oryza/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Frío , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Oryza/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Temperatura
10.
Int J Mol Sci ; 19(3)2018 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-29510500

RESUMEN

Chlorogenic acid (CGA) decreases colon cancer-cell proliferation but the combined anti-cancer effects of CGA with its major colonic microbial metabolites, caffeic acid (CA), 3-phenylpropionic acid (3-PPA) and benzoic acid (BA), needs elucidation as they occur together in colonic digesta. Caco-2 cancer cells were treated for 24 h with the four compounds individually (50-1000 µM) and as an equimolar ratio (1:1:1:1; MIX). The effective concentration to decrease cell proliferation by 50% (EC50) was lower for MIX (431 ± 51.84 µM) and CA (460 ± 21.88) versus CGA (758 ± 19.09 µM). The EC50 for cytotoxicity measured by lactate dehydrogenase release in MIX (527 ± 75.34 µM) showed more potency than CA (740 ± 38.68 µM). Cell proliferation was decreased by 3-PPA and BA at 1000 µM with no cytotoxicity. Cell-cycle arrest was induced at the S-phase by CA (100 µM), MIX (100 µM), CGA (250 µM) and 3-PPA (500 µM) with activation of caspase-3 by CGA, CA, MIX (500 and 1000 µM). Mitochondrial DNA content was reduced by 3-PPA (1000 µM). The anti-cancer effects occurred at markedly lower concentrations of each compound within MIX than when provided singly, indicating that they function together to enhance anti-colon cancer activities.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácido Clorogénico/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Ácido Benzoico/farmacología , Ácido Benzoico/toxicidad , Células CACO-2 , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/toxicidad , Ácido Clorogénico/toxicidad , Humanos , Fenilpropionatos/farmacología , Fenilpropionatos/toxicidad
11.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322061

RESUMEN

Solanum is one of the largest genera, including two important crops-potato (Solanum tuberosum) and tomato (Solanum lycopersicum). In this study we compared the chloroplast codon usage bias (CUB) among 12 Solanum species, between photosynthesis-related genes (Photo-genes) and genetic system-related genes (Genet-genes), and between cultivated species and wild relatives. The Photo-genes encode proteins for photosystems, the photosynthetic electron transport chain, and RuBisCO, while the Genet-genes encode proteins for ribosomal subunits, RNA polymerases, and maturases. The following findings about the Solanum chloroplast genome CUB were obtained: (1) the nucleotide composition, gene expression, and selective pressure are identified as the main factors affecting chloroplast CUB; (2) all these 12 chloroplast genomes prefer A/U over G/C and pyrimidines over purines at the third-base of codons; (3) Photo-genes have higher codon adaptation indexes than Genet-genes, indicative of a higher gene expression level and a stronger adaptation of Photo-genes; (4) gene function is the primary factor affecting CUB of Photo-genes but not Genet-genes; (5) Photo-genes prefer pyrimidine over purine, whereas Genet-genes favor purine over pyrimidine, at the third position of codons; (6) Photo-genes are mainly affected by the selective pressure, whereas Genet-genes are under the underlying mutational bias; (7) S. tuberosum is more similar with Solanum commersonii than with Solanum bulbocastanum; (8) S. lycopersicum is greatly different from the analyzed seven wild relatives; (9) the CUB in codons for valine, aspartic acid, and threonine are the same between the two crop species, S. tuberosum and S. lycopersicum. These findings suggest that the chloroplast CUB contributed to the differential requirement of gene expression activity and function between Photo-genes and Genet-genes and to the performance of cultivated potato and tomato.


Asunto(s)
Genoma del Cloroplasto , Proteínas de Plantas/genética , Solanum/genética , Composición de Base , Codón , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Filogenia , Selección Genética , Análisis de Secuencia de ADN
12.
Hepatobiliary Pancreat Dis Int ; 16(4): 395-404, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28823370

RESUMEN

BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGFß1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGFß1 in primary hepatic stellate cells (HSCs). METHODS: We overexpressed TGFß1 or IGFBPrP1 and inhibited TGFß1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of α-smooth muscle actin (α-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS: We found that the adenovirus vector encoding the TGFß1 gene (AdTGFß1) induced IGFBPrP1 expression while that of α-SMA, collagen I, fibronectin, and TGFß1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGFß1, α-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGFß1 expression reduced the IGFBPrP1-stimulated expression of α-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS: These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGFß1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGFß1-depedent manner, and may act as an upstream regulatory factor of TGFß1 in the Smad pathway.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Cirrosis Hepática/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Actinas/metabolismo , Animales , Células Cultivadas , Colágeno Tipo I/metabolismo , Progresión de la Enfermedad , Fibronectinas/metabolismo , Células Estrelladas Hepáticas/patología , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Fosforilación , Cultivo Primario de Células , Interferencia de ARN , Ratas Sprague-Dawley , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta1/genética
13.
Curr Issues Mol Biol ; 20: 29-46, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26636317

RESUMEN

This article proposes the concept of genome network, describes different variations of the somatic genome network, and reviews the agricultural implications of such variations. All genetic materials in a cell constitute the genome network of the cell and can jointly influence the cell's function and fate. The somatic genome of a plant is the genome network of cells in somatic tissues and of nonreproductive cells in pollen and ovules. Somatic genome variation (SGV, approximately equivalent to somagenetic variation) occurs at multiple levels, including stoichiometric, ploidy, and sequence variations. For a multicellular organism, the term "somatic genome variation" covers both the variation in part of the organism and the generation of new genotype individuals through somatic means from a sexually produced original genotype. For unicellular organisms, genome variation in somatic nuclei occurs at the whole organism level because there is only a single cell per individual. Growth, development and evolution of living organisms require both stability and instability of their genomes. Somatic genome variation displays many more attributes than genetic mutation and has strong implications for agriculture.


Asunto(s)
Variación Genética , Ganado/genética , Agricultura , Animales , Evolución Molecular , Genoma , Humanos , Modelos Genéticos , Mutación , Ploidias
14.
Curr Issues Mol Biol ; 20: 13-28, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26637164

RESUMEN

Somatic mutation of signal transduction genes or key nodes of the cellular protein network can cause severe diseases in humans but can sometimes genetically improve plants, likely because growth is determinate in animals but indeterminate in plants. This article reviews protein networks; human protein ranking; the mitogen-activated protein kinase (MAPK) and insulin (phospho- inositide 3kinase [PI3K]/phosphatase and tensin homolog [PTEN]/protein kinase B [AKT]) signaling pathways; human diseases caused by somatic mutations to the PI3K/PTEN/ AKT pathway; use of the MAPK pathway in plant molecular breeding; and protein domain evolution. Casitas B-lineage lymphoma (CBL), PTEN, MAPK1 and PIK3CA are among PIK3CA the top-ranked proteins in directional rankings. Eight proteins (ACVR1, CDC42, RAC1, RAF1, RHOA, TGFBR1, TRAF2, and TRAF6) are ranked in the top 50 key players in both signal emission and signal reception and in interaction with many other proteins. Top-ranked proteins likely have major impacts on the network function. Such proteins are targets for drug discovery, because their mutations are implicated in various cancers and overgrowth syndromes. Appropriately managing food intake may help reduce the growth of tumors or malformation of tissues. The role of the protein kinase C/ fatty acid synthase pathway in fat deposition in PTEN/PI3K patients should be investigated. Both the MAPK and insulin signaling pathways exist in plants, and MAPK pathway engineering can improve plant tolerance to biotic and abiotic stresses such as salinity.


Asunto(s)
Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Algoritmos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Humanos , Anotación de Secuencia Molecular , Proteínas de Plantas/metabolismo , Transducción de Señal
15.
Crit Rev Food Sci Nutr ; 56(14): 2278-303, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-25674927

RESUMEN

Potato (Solanum tuberosum L.) is common, affordable, readily stored, easily prepared for consumption, and nutritious. For these reasons, potato has become one of the top five crops consumed worldwide. Consequently, it is important to understand its contribution to both our daily and long-term health. Potato is one of the most important sources of antioxidants in the human diet. As such, it supports the antioxidant defense network in our bodies that reduces cellular and tissue toxicities that result from free radical-induced protein, lipid, carbohydrate, and DNA damage. In this way, potato antioxidants may reduce the risk for cancers, cardiovascular diseases, diabetes, and even radiation damage. A better understanding of these components of potato is needed by the food industry, health professionals, and consumers. This review provides referenced summaries of all of the antioxidant groups present in potato tubers and updated schematics including genetic regulation for the major antioxidant biosynthesis pathways. This review complements current knowledge on the role of potato in human health. We hope it will provide impetus toward breeding efforts to develop cultivars with increased antioxidant capacity as 'functional foods' and encourage potato consumers and processors to work toward preservation of antioxidant capacity in cooked potato and potato products.


Asunto(s)
Antioxidantes/metabolismo , Solanum tuberosum/metabolismo , Antioxidantes/química , Regulación de la Expresión Génica de las Plantas , Humanos , Estructura Molecular , Fenómenos Fisiológicos de la Nutrición
16.
Int J Mol Sci ; 17(9)2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27571073

RESUMEN

To investigate anti-arthritic effects of matrine isolated from the roots of S. flavescens on type II collagen-induced arthritis (CIA) in rats and to explore its related potential mechanisms, CIA rats were established and administered with matrine (20, 40 or 80 mg/kg/days, for 30 days). Subsequently, blood was collected to determine serum levels of TNF-α, IL-1ß, IL-6, IL-8, IL-17A, IL-10, MMP-2, MMP-3 and MMP-9, and hind paws and knee joints were collected for histopathological examination. Furthermore, indices of the thymus and spleen were determined, and synovial tissues were collected to determine the protein expressions of p-IκB, IκB, Cox-2 and iNOS. Our results indicated that matrine significantly suppressed inflammatory reactions and synovial tissue destruction. Matrine inhibited paw swelling, arthritis indices and weight loss in CIA rats. Additionally, matrine decreased the levels of TNF-α, IL-1ß, IL-6, IL-8, IL-17A, MMP-2, MMP-3 and MMP-9. Matrine also down-regulated expressions of p-IκB, Cox-2, and iNOS but up-regulated IκB in synovial tissues in CIA rats. The results suggested matrine possesses an anti-arthritic effect in CIA rats via inhibiting the release of pro-inflammatory cytokines and proteins that promote the NF-κB pathway.


Asunto(s)
Alcaloides/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Colágeno Tipo II/toxicidad , Inflamación/tratamiento farmacológico , Quinolizinas/uso terapéutico , Alcaloides/química , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/inmunología , Inflamación/sangre , Interleucina-10/sangre , Interleucina-17/sangre , Interleucina-6/sangre , Interleucina-8/sangre , Masculino , Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 3 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/sangre , Quinolizinas/química , Ratas , Ratas Sprague-Dawley , Sophora/química , Matrinas
17.
Curr Genet ; 61(4): 591-600, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25782449

RESUMEN

Little information is available about organellar genome copy numbers and integrity in plant roots, although it was reported recently that the plastid and mitochondrial genomes were damaged under light, resulting in non-functional fragments in green seedling leaves in a maize line. In the present study, we investigated organellar genome copy numbers and integrity, after assessing the cellular ploidy, in seedling leaves and roots of two elite maize (Zea mays) cultivars using both long-fragment polymerase chain reaction (long-PCR) and real-time quantitative polymerase chain reaction (qPCR, a type of short-PCR). Since maize leaf and root cells are mainly diploid according to chromosome number counting and the literature, the DNA amount ratio between the organellar genomes and the nuclear genome could be used to estimate average organellar genome copy numbers per cell. In the present study, both long-PCR and qPCR analyses found that green leaves had dramatically more plastid DNA and less mitochondrial DNA than roots had in both cultivars. The similarity in results from long-PCR and qPCR suggests that green leaves and roots during moderate maturation have largely intact plastid and mitochondrial genomes. The high resolution of qPCR led to the detection of an increase in copies in the plastid genome and a decrease in copies in the analyzed mitochondrial sub-genomes during the moderate maturation of seedling leaves and roots. These results suggest that green seedling leaves and roots of these two maize cultivars during moderate maturation had essentially intact organellar genomes, an increased copy number of the plastid genome, and decreased copy numbers of certain mitochondrial sub-genomes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma de Planta , Hojas de la Planta/genética , Raíces de Plantas/genética , Plantones/genética , Zea mays/genética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cariotipo , Mitocondrias/genética , Mitocondrias/ultraestructura , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/ultraestructura , Plastidios/genética , Plastidios/ultraestructura , Reacción en Cadena de la Polimerasa/métodos , Plantones/crecimiento & desarrollo , Plantones/ultraestructura , Zea mays/crecimiento & desarrollo , Zea mays/ultraestructura
18.
BMC Evol Biol ; 14: 162, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25052519

RESUMEN

BACKGROUND: The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. RESULTS: We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of "U-rich-A-rich-U-rich-Poly(A) site-U-rich regions", or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. CONCLUSION: This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution.


Asunto(s)
Evolución Molecular , Poliadenilación , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Animales , Composición de Base , Secuencia Conservada , Eucariontes/clasificación , Eucariontes/genética , Motivos de Nucleótidos , Plantas/clasificación , Plantas/genética , Poli A/metabolismo , ARN Mensajero/genética
19.
Int J Biol Macromol ; 269(Pt 2): 131964, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692525

RESUMEN

This study aims to identify FDA-approved drugs that can target the kappa-opioid receptor (KOR) for the treatment of demyelinating diseases. Demyelinating diseases are characterized by myelin sheath destruction or formation that results in severe neurological dysfunction. Remission of this disease is largely dependent on the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLGs) in demyelinating lesions. KOR is an important regulatory protein and drug target for the treatment of demyelinating diseases. However, no drug targeting KOR has been developed due to the long clinical trials for drug discovery. Here, a structure-based virtual screening was applied to identify drugs targeting KOR among 1843 drugs of FDA-approved drug libraries, and famotidine was screen out by its high affinity cooperation with KOR as well as the clinical safety. We discovered that famotidine directly promoted OPC maturation and remyelination using the complementary in vitro and in vivo models. Administration of famotidine was not only effectively enhanced CNS myelinogenesis, but also promoted remyelination. Mechanically speaking, famotidine promoted myelinogenesis or remyelination through KOR/STAT3 signaling pathway. In general, our study provided evidence of new clinical applicability of famotidine for the treatment of demyelinating diseases for which there is currently no effective therapy.


Asunto(s)
Diferenciación Celular , Famotidina , Receptores Opioides kappa , Remielinización , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Humanos , Ratones , Diferenciación Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Famotidina/farmacología , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Receptores Opioides kappa/metabolismo , Remielinización/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Femenino , Ratones Endogámicos C57BL , Células HEK293
20.
Virol Sin ; 39(3): 403-413, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636706

RESUMEN

The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 â€‹cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Triptófano-ARNt Ligasa , Replicación Viral , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/genética , Animales , Línea Celular , Porcinos , Triptófano-ARNt Ligasa/metabolismo , Triptófano-ARNt Ligasa/genética , Seudorrabia/virología , Seudorrabia/metabolismo , Transducción de Señal , Mitocondrias/metabolismo , Interacciones Huésped-Patógeno , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA