Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719955

RESUMEN

Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH. Therefore, our study aimed to investigate the effect and pharmacological mechanism of CANA in treating PH. First, CANA suppressed increased pulmonary artery pressure, right ventricular hypertrophy, and vascular remodeling in both mouse and rat PH models. Network pharmacology, transcriptomics, and biological results suggested that CANA could ameliorate PH by suppressing excessive oxidative stress and pulmonary artery smooth muscle cell proliferation partially through the activation of PPARγ. Further studies demonstrated that CANA inhibited phosphorylation of PPARγ at Ser225 (a novel serine phosphorylation site in PPARγ), thereby promoting the nuclear translocation of PPARγ and increasing its ability to resist oxidative stress and proliferation. Taken together, our study not only highlighted the potential pharmacological effect of CANA on PH but also revealed that CANA-induced inhibition of PPARγ Ser225 phosphorylation increases its capacity to counteract oxidative stress and inhibits proliferation. These findings may stimulate further research and encourage future clinical trials exploring the therapeutic potential of CANA in PH treatment.

2.
Genomics ; 115(6): 110728, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37858843

RESUMEN

The anthocyanin is a protective substance in various plants, and plays important roles in resisting to low-temperature. Here, we explored transcriptome analysis of pink flower (as CK) and the natural mutant red flower (as research objects) under low-temperature conditions, and aimed to reveal the potential functions of anthocyanins and anthocyanin-related regulatory factors in resistance to low-temperature. Our results showed that most of the differentially expressed genes (DEGs) encoding key enzymes in the late stage of anthocyanin metabolism in the mutant were significantly up-regulated. Meanwhile, several genes significantly differentially expressed in CK or mutant were obtained by classification and analysis of transcription factors (TFs), phytohormones and osmoregulators. Additionally, WGCNA was carried out to mine hub genes resistanted to low-temperature stress in flavonoid pathway. Finally, one UFGT family gene, three MYB and one bHLH were obtained as the future hub genes of this study. Combined with the above information, we concluded that the ability of the red flower mutant to grow and develop normally at low-temperatures was the result of a combination of flavonoids and cold resistance genes.


Asunto(s)
Antocianinas , Transcriptoma , Antocianinas/genética , Temperatura , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentación/genética
3.
J Lipid Res ; 64(4): 100352, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871792

RESUMEN

Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR-/-) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR-/- mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR-/- mice, warrant further investigations.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Ratones , Animales , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Células Endoteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Receptores de LDL/genética , Colesterol
4.
BMC Plant Biol ; 23(1): 204, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076827

RESUMEN

BACKGROUND: Uridine disphosphate (UDP) glycosyltransferases (UGTs) act upon a huge variety of highly diverse and complex substrates, such as phytohormones and specialized metabolites, to regulate plant growth, development, disease resistance, and environmental interactions. However, a comprehensive investigation of UGT genes in tobacco has not been conducted. RESULTS: In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in Nicotiana tabacum. We predicted 276 NtUGT genes, which were classified into 18 major phylogenetic subgroups. The NtUGT genes were invariably distributed among all the 24 chromosomes with structural diversity in exon/intron structure, conserved motifs, and cis-acting elements of promoters. Three groups of proteins which involved in flavonoid biosynthesis, plant growth and development, transportation and modification were identified that interact with NtUGT proteins using the PPI analysis. Expression analysis of NtUGT genes in cold stress, drought stress and different flower color using both online RNA-Seq data and the realtime PCR analysis, suggested the distinct role of NtUGT genes in resistance of cold, drought and in flavonoid biosynthesis. The enzymatic activities of seven NtUGT proteins that potentially involved in flavonoid glycosylation were analyzed, and found that all seven exhibited activity on myricetin; six (NtUGT108, NtUGT123, NtUGT141, NtUGT155, NtUGT179, and NtUGT195) showed activity on cyanidin; and three (NtUGT108, NtUGT195, and NtUGT217) were active on the flavonol aglycones kaempferol and quercetin, which catalyzing the substrates (myricetin, cyanidin or flavonol) to form new products. We further investigated the enzymatic products and enzymatic properties of NtUGT108, NtUGT195, and NtUGT217, suggested their diverse enzymatic activity toward flavonol, and NtUGT217 showed the highest catalyzed efficient toward quercetin. Overexpression of NtUGT217 significantly increase the content levels of the quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside in transgenic tobacco leaves. CONCLUSION: We identified 276 UGT genes in Nicotiana tabacum. Our study uncovered valuable information about the phylogenetic structure, distribution, genomic characters, expression patterns and enzymatic activity of NtUGT genes in tobacco. We further identified three NtUGT genes involved in flavonoid biosynthesis, and overexpressed NtUGT217 to validate its function in catalyze quercetin. The results provide key candidate NtUGT genes for future breeding of cold and drought resistance and for potential metabolic engineering of flavonoid compounds.


Asunto(s)
Glicosiltransferasas , Nicotiana , Quercetina , Flavonoides/metabolismo , Flavonoles , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quercetina/metabolismo , Estrés Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo , Uridina/metabolismo , Uridina Difosfato/metabolismo
5.
Respir Res ; 24(1): 78, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915149

RESUMEN

BACKGROUND: Circular RNAs (circRNAs), a novel class of non-coding RNAs, play an important regulatory role in pulmonary arterial hypertension (PAH); however, the specific mechanism is rarely studied. In this study, we aimed to discover functional circRNAs and investigate their effects and mechanisms in hypoxia-induced pulmonary vascular remodelling, a core pathological change in PAH. METHODS: RNA sequencing was used to illustrate the expression profile of circRNAs in hypoxic PAH. Bioinformatics, Sanger sequencing, and quantitative real-time PCR were used to identify the ring-forming characteristics of RNA and analyse its expression. Then, we established a hypoxia-induced PAH mouse model to evaluate circRNA function in PAH by echocardiography and hemodynamic measurements. Moreover, microRNA target gene database screening, fluorescence in situ hybridisation, luciferase reporter gene detection, and western blotting were used to explore the mechanism of circRNAs. RESULTS: RNA sequencing identified 432 differentially expressed circRNAs in mouse hypoxic lung tissues. Our results indicated that circ-Ntrk2 is a stable cytoplasmic circRNA derived from Ntrk2 mRNA and frequently upregulated in hypoxic lung tissue. We further found that circ-Ntrk2 sponges miR-296-5p and miR-296-5p can bind to the 3'-untranslated region of transforming growth factor-ß1 (TGF-ß1) mRNA, thereby attenuating TGF-ß1 translation. Through gene knockout or exogenous expression, we demonstrated that circ-Ntrk2 could promote PAH and vascular remodelling. Moreover, we verified that miR-296-5p overexpression alleviated pulmonary vascular remodelling and improved PAH through the TGF-ß1/p38 MAPK pathway. CONCLUSIONS: We identified a new circRNA (circ-Ntrk2) and explored its function and mechanism in PAH, thereby establishing potential targets for the diagnosis and treatment of PAH. Furthermore, our study contributes to the understanding of circRNA in relation to PAH.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Hipertensión Arterial Pulmonar , ARN Circular , Animales , Ratones , Proliferación Celular , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/genética , MicroARNs/genética , MicroARNs/metabolismo , Hipertensión Arterial Pulmonar/genética , Receptor trkB , ARN Circular/genética , ARN Mensajero , Factor de Crecimiento Transformador beta1/genética , Remodelación Vascular/genética
6.
J Cell Mol Med ; 26(10): 3005-3021, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35437883

RESUMEN

Long non-coding RNAs (lncRNAs) play a significant role in pulmonary hypertension (PH). Our preliminary data showed that hypoxia-induced PH is attenuated by fibroblast growth factor 21 (FGF21) administration. Therefore, we further investigated the regulatory role of long non-coding RNAs in PH treated with FGF21. RNA sequencing analysis and real-time PCR identified a significantly up-regulation of the H19 after FGF21 administration. Moreover, gain- and loss-of-function assays demonstrated that FGF21 suppressed hypoxia-induced proliferation of pulmonary artery smooth muscle cells partially through upregulation of H19. In addition, FGF21 deficiency markedly exacerbated hypoxia-induced increases of pulmonary artery pressure and pulmonary vascular remodelling. In addition, AAV-mediated H19 overexpression reversed the malignant phenotype of FGF21 knockout mice under hypoxia expose. Further investigation uncovered that H19 also acted as an orchestra conductor that inhibited the function of mechanistic target of rapamycin complex 1 (mTORC1) by disrupting the interaction of mTORC1 with eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1). Our work highlights the important role of H19 in PH treated with FGF21 and suggests a mechanism involving mTORC1/EIF4EBP1 inhibition, which may provide a fundamental for clinical application of FGF21 in PH.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Factores de Crecimiento de Fibroblastos , Hipertensión Pulmonar , Diana Mecanicista del Complejo 1 de la Rapamicina , ARN Largo no Codificante , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/patología , ARN Largo no Codificante/metabolismo
7.
J Cell Mol Med ; 26(7): 1886-1895, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35199443

RESUMEN

Nitrogen mustard (NM) is an alkylating vesicant that causes severe pulmonary injury. Currently, there are no effective means to counteract vesicant-induced lung injury. MG53 is a vital component of cell membrane repair and lung protection. Here, we show that mice with ablation of MG53 are more susceptible to NM-induced lung injury than the wild-type mice. Treatment of wild-type mice with exogenous recombinant human MG53 (rhMG53) protein ameliorates NM-induced lung injury by restoring arterial blood oxygen level, by improving dynamic lung compliance and by reducing airway resistance. Exposure of lung epithelial and endothelial cells to NM leads to intracellular oxidative stress that compromises the intrinsic cell membrane repair function of MG53. Exogenous rhMG53 protein applied to the culture medium protects lung epithelial and endothelial cells from NM-induced membrane injury and oxidative stress, and enhances survival of the cells. Additionally, we show that loss of MG53 leads to increased vulnerability of macrophages to vesicant-induced cell death. Overall, these findings support the therapeutic potential of rhMG53 to counteract vesicant-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Mecloretamina , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética , Animales , Células Endoteliales/metabolismo , Pulmón/metabolismo , Mecloretamina/uso terapéutico , Mecloretamina/toxicidad , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Recombinantes/metabolismo
8.
J Cell Mol Med ; 26(4): 1034-1049, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34989130

RESUMEN

The proliferation, migration and apoptotic resistance of pulmonary artery smooth muscle cells (PASMCs) are central to the progression of pulmonary arterial hypertension (PAH). Our previous study identified that fibroblast growth factor 21 (FGF21) regulates signalling pathway molecules, such as peroxisome proliferator-activated receptor gamma (PPARγ), to play an important role in PAH treatment. However, the biological roles of miRNAs in these effects are not yet clear. In this study, using miRNA sequencing and real-time PCR, we found that FGF21 treatment inhibited miR-130 elevation in hypoxia-induced PAH in vitro and in vivo. Dual luciferase reporter gene assays showed that miR-130 directly negatively regulates PPARγ expression. Inhibition of miR-130 expression suppressed abnormal proliferation, migration and apoptotic resistance in hypoxic PASMCs, and this effect was corrected upon PPARγ knockdown. Both the ameliorative effect of FGF21 on pulmonary vascular remodelling and the inhibitory effect on proliferation, migration and apoptotic resistance in PASMCs were observed following exogenous administration of miR-130 agomir. In conclusion, this study revealed the protective effect and mechanism of FGF21 on PAH through regulation of the miR-130/PPARγ axis, providing new ideas for the development of potential drugs for PAH based on FGF21.


Asunto(s)
MicroARNs , Hipertensión Arterial Pulmonar , Proliferación Celular/genética , Células Cultivadas , Regulación hacia Abajo/genética , Factores de Crecimiento de Fibroblastos , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Miocitos del Músculo Liso/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Arteria Pulmonar/metabolismo
9.
Physiol Plant ; 173(1): 369-383, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33880749

RESUMEN

Cadmium (Cd) is known as one of the most hazardous elements in the environment and a persistent soil constraint toxic to all flora and fauna. In this study, we conducted physiological, biochemical, and transcriptomic analyses of Nicotiana rustica (N. rustica) and Nicotiana tabacum (N. tabacum) treated with CdCl2 to know the underlying molecular mechanisms of Cd accumulation. As a result, N. rustica had more dry weight than N. tabacum. Additionally, N. rustica accumulated higher Cd concentration (69.65 times), Cd2+ influx (1.32-fold), glutathione S-transferases (GST) enzyme activity (2.54 times), GSH/GSSG (oxidized form of GSH) ratio, increase of superoxide dismutase and CAT and a lower H2 O2 and superoxide (O2 •- ) accumulation in their roots than N. tabacum. Cd mainly distributed in the cytoplasm of both species and N. rustica had a significant proportion in the cell wall. Furthermore, the transcriptomic analysis revealed 173 and 710 differentially expressed genes (DEGs) between control and Cd-stressed plants in the leaves and roots of N. rustica, while 576 and 1543 DEGs were found in the leaves and roots of N. tabacum, respectively. In N. rustica, phenylpropanoid biosynthesis and phenylalanine metabolism were the most enriched pathways, while GSH metabolism, ATP-binding cassette transporters and phenylpropanoid biosynthesis were the most enriched in N. tabacum. Finally, we found that DEGs related to metal influx, sequestration, remobilization, and chelation were responsible for Cd accumulation. These results indicated that N. rustica accumulated higher Cd content than N. tabacum, suggesting that each species utilized different response mechanism under the same Cd stress conditions. The DEGs identified in this study might lead to the identification of genes or pathways related to Cd regulation. This study identifies important regulators related to Cd accumulation.


Asunto(s)
Cadmio , Transcriptoma , Cadmio/toxicidad , Perfilación de la Expresión Génica , Raíces de Plantas/genética , Nicotiana/genética
10.
PLoS Genet ; 11(8): e1005393, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26267381

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution) in ZFHX3, rs2200733 (C/T substitution) near PITX2c, and rs3807989 (A/G substitution) in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43), P=8.00×10-24). The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI) analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4) or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4). The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02). Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene interactions involved in genetics of complex disease traits.


Asunto(s)
Fibrilación Atrial/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Regiones no Traducidas 3' , Fibrilación Atrial/metabolismo , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Secuencia de Bases , Sitios de Unión , Estudios de Casos y Controles , Caveolina 1/genética , Caveolina 1/metabolismo , Epistasis Genética , Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Humanos , MicroARNs/genética , Polimorfismo de Nucleótido Simple , Interferencia de ARN , Factores de Transcripción/metabolismo , Proteína del Homeodomínio PITX2
11.
Hum Genet ; 133(5): 499-508, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24190014

RESUMEN

A single nucleotide polymorphism (SNP) rs1122608 on chromosome 19p13.2 and in the BRG1/SMARCA4 gene was previously associated with coronary artery disease (CAD). CAD and ischemic stroke are both associated with atherosclerosis. Thus, we tested the hypothesis that rs1122608 is associated with ischemic stroke. Further studies were used to identify the most likely mechanism by which rs1122608 regulates atherosclerosis. For case-control association studies, two independent Chinese Han GeneID cohorts were used, including a Central cohort with 1,075 cases and 2,685 controls and the Northern cohort with 1,208 cases and 824 controls. eQTL and real-time RT-PCR analyses were used to identify the potential candidate gene(s) affected by rs1122608. The minor allele T of SNP rs1122608 showed significant association with a decreased risk of ischemic stroke in the Central GeneID cohort (adjusted P adj = 2.1 × 10(-4), OR 0.61). The association was replicated in an independent Northern GeneID cohort (P adj = 6.00 × 10(-3), OR 0.69). The association became more significant in the combined population (P adj = 7.86 × 10(-5), OR 0.73). Allele T of SNP rs1122608 also showed significant association with a decreased total cholesterol level (P adj = 0.013). Allele T of rs1122608 was associated with an increased expression level of SFRS3 encoding an mRNA splicing regulator, but not with the expression of BRG1/SMARCA4 or LDLR (located 36 kb from rs1122608). Increased expression of SFSR3 may decrease IL-1ß expression and secretion, resulting in reduced risk of atherosclerosis and stroke. This is the first study that demonstrates that rs1122608 confers protection against ischemic stroke and implicates splicing factor SFSR3 in the disease process.


Asunto(s)
Cromosomas Humanos Par 19 , ADN Helicasas/genética , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Accidente Cerebrovascular/genética , Factores de Transcripción/genética , Alelos , Secuencia de Bases , Cartilla de ADN , Humanos , Lípidos/sangre , Reacción en Cadena de la Polimerasa , Sitios de Carácter Cuantitativo , Factores de Empalme Serina-Arginina , Accidente Cerebrovascular/prevención & control
12.
Inflammation ; 47(1): 209-226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37864659

RESUMEN

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening disease without an effective drug at present. Fibroblast growth factor 21 (FGF21) was reported to be protective against inflammation in metabolic disease in recent studies. However, the role of FGF21 in ALI has been rarely investigated. In this study, it was found that the expression of FGF21 was markedly increased in lung tissue under lipopolysaccharide (LPS) stimulation in vivo, whereas it was decreased in lung epithelial cells under LPS stimulation in vitro. Therefore, our research aimed to elucidate the potential role of FGF21 in LPS-induced ALI and to detect possible underlying mechanisms. The results revealed that the deficiency of FGF21 aggravated pathological damage, inflammatory infiltration, and pulmonary function in LPS-induced ALI, while exogenous administration of FGF21 improved these manifestations. Moreover, through RNA sequencing and enrichment analysis, it was unveiled that FGF21 might play a protective role in LPS-induced ALI via JAK2/STAT3 signaling pathway. The therapeutic effect of FGF21 was weakened after additional usage of JAK2 activator in vivo. Further investigation revealed that FGF21 significantly inhibited STAT3 phosphorylation and impaired the nuclear translocation of STAT3 in vitro. In addition, the aggravation of inflammation caused by silencing FGF21 can be alleviated by JAK2 inhibitor in vitro. Collectively, these findings unveil a potent protective effect of FGF21 against LPS-induced ALI by inhibiting the JAK2/STAT3 pathway, implying that FGF21 might be a novel and effective therapy for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Factores de Crecimiento de Fibroblastos , Síndrome de Dificultad Respiratoria , Humanos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Janus Quinasa 2/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo
13.
Life Sci ; 346: 122648, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631668

RESUMEN

AIMS: Acute lung injury (ALI) is a life-threatening lung disease characterized by inflammatory cell infiltration and lung epithelial injury. Icariside II (ICS II), one of the main active ingredients of Herba Epimedii, exhibits anti-inflammatory and immunomodulatory effects. However, the effect and mechanism of ICS II in ALI remain unclear. The purpose of the current study was to investigate the pharmacological effect and underlying mechanism of ICS II in ALI. MAIN METHODS: Models of neutrophil-like cells, human peripheral blood neutrophils, and lipopolysaccharide (LPS)-induced ALI mouse model were utilized. RT-qPCR and Western blotting determined the gene and protein expression levels. Protein distribution and quantification were analyzed by immunofluorescence. KEY FINDINGS: ICS II significantly reduced lung histopathological damage, edema, and inflammatory cell infiltration, and it reduced pro-inflammatory cytokines in ALI. There is an excessive activation of neutrophils leading to a significant production of NETs in ALI mice, a process mitigated by the administration of ICS II. In vivo and in vitro studies found that ICS II could decrease NET formation by targeting neutrophil C-X-C chemokine receptor type 4 (CXCR4). Further data showed that ICS II reduces the overproduction of dsDNA, a NETs-related component, thereby suppressing cGAS/STING/NF-κB signalling pathway activation and inflammatory mediators release in lung epithelial cells. SIGNIFICANCE: This study suggested that ICS II may alleviate LPS-induced ALI by modulating the inflammatory response, indicating its potential as a therapeutic agent for ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Trampas Extracelulares , Flavonoides , Lipopolisacáridos , Ratones Endogámicos C57BL , Neutrófilos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/inmunología , Animales , Ratones , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Humanos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Flavonoides/farmacología , Masculino , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Antiinflamatorios/farmacología
14.
Int Immunopharmacol ; 132: 111925, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38579562

RESUMEN

Noncoding RNAs have been shown to play essential roles in hypoxic pulmonary hypertension (HPH). Our preliminary data showed that HPH is attenuated by fibroblast growth factor 21 (FGF21) administration. Therefore, we further investigated the whole transcriptome RNA expression patterns and interactions in a mice HPH model treated with FGF21. By whole-transcriptome sequencing, differentially expressed mRNAs, miRNAs, lncRNAs, and circRNAs were successfully identified in normoxia (Nx) vs. hypoxia (Hx) and Hx vs. hypoxia + FGF21 (Hx + F21). Differentially expressed mRNAs, miRNAs, lncRNAs, and circRNAs regulated by hypoxia and FGF21 were selected through intersection analysis. Based on prediction databases and sequencing data, differentially co-expressed mRNAs, miRNAs, lncRNAs, and circRNAs were further screened, followed by functional enrichment analysis. MAPK signaling pathway and epigenetic modification were enriched and may play fundamental roles in the therapeutic effects of FGF21. The ceRNA regulatory network of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA was constructed with miR-7a-5p, miR-449c-5p, miR-676-3p and miR-674-3p as the core. In addition, quantitative real-time PCR experiments were employed to verify the whole-transcriptome sequencing data. The results of luciferase reporter assays highlighted the relationship between miR-449c-5p and XR_878320.1, miR-449c-5p and Stab2, miR-449c-5p and circ_mtcp1, which suggesting that miR-449c-5p may be a key regulator of FGF21 in the treatment of PH. Taken together, this study provides potential biomarkers, pathways, and ceRNA regulatory networks in HPH treated with FGF21 and will provide an experimental basis for the clinical application of FGF21 in PH.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Redes Reguladoras de Genes , Hipertensión Pulmonar , MicroARNs , ARN Largo no Codificante , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/uso terapéutico , Animales , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/tratamiento farmacológico , MicroARNs/genética , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones Endogámicos C57BL , Masculino , Transcriptoma , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hipoxia/genética , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , ARN Circular/genética , ARN Endógeno Competitivo
15.
Inflammation ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653921

RESUMEN

Aging is a physiological condition accomplished with persistent low-grade inflammation and metabolic disorders. FGF21 has been reported to act as a potent longevity determinant, involving inflammatory response and energy metabolism. In this study, we engineered aging FGF21 knockout mice of 36-40 weeks and observed that FGF21 deficiency manifests a spontaneous inflammatory response of lung and abnormal accumulation of lipids in liver. On one hand, inflamed state in lungs and increased circulating inflammatory cytokines were found in FGF21 knockout mice of 36-40 weeks. To evaluate the ability of FGF21 to suppress inflammation, a subsequent study found that FGF21 knockout aggravated LPS-induced pulmonary exudation and inflammatory infiltration in mice, while exogenous administration of FGF21 reversed these malignant phenotypes by enhancing microvascular endothelial junction. On the other hand, FGF21 knockout induces fatty liver in aging mice, characterized by excessive accumulation of triglycerides within hepatocytes. Further quantitative metabolomics and lipidomics analysis revealed perturbed metabolic profile in liver lacking FGF21, including disrupted glucose and lipids metabolism, glycerophospholipid metabolism, and amino acid metabolism. Taken together, this investigation reveals the protective role of FGF21 during aging by weakening the inflammatory response and balancing energy metabolism.

16.
Cells ; 12(8)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37190112

RESUMEN

Ischemic heart disease is the leading cause of mortality in the United States. Progenitor cell therapy can restore myocardial structure and function. However, its efficacy is severely limited by cell aging and senescence. Gremlin-1 (GREM1), a member of the bone morphogenetic protein antagonist family, has been implicated in cell proliferation and survival. However, GREM1's role in cell aging and senescence has never been investigated in human cardiac mesenchymal progenitor cells (hMPCs). Therefore, this study assessed the hypothesis that overexpression of GREM1 rejuvenates the cardiac regenerative potential of aging hMPCs to a youthful stage and therefore allows better capacity for myocardial repair. We recently reported that a subpopulation of hMPCs with low mitochondrial membrane potential can be sorted from right atrial appendage-derived cells in patients with cardiomyopathy and exhibit cardiac reparative capacity in a mouse model of myocardial infarction. In this study, lentiviral particles were used to overexpress GREM1 in these hMPCs. Protein and mRNA expression were assessed through Western blot and RT-qPCR. FACS analysis for Annexin V/PI staining and lactate dehydrogenase assay were used to assess cell survival. It was observed that cell aging and cell senescence led to a decrease in GREM1 expression. In addition, overexpression of GREM1 led to a decrease in expression of senescence genes. Overexpression of GREM1 led to no significant change in cell proliferation. However, GREM1 appeared to have an anti-apoptotic effect, with an increase in survival and decrease in cytotoxicity evident in GREM1-overexpressing hMPCs. Overexpressing GREM1 also induced cytoprotective properties by decreasing reactive oxidative species and mitochondrial membrane potential. This result was associated with increased expression of antioxidant proteins, such as SOD1 and catalase, and activation of the ERK/NRF2 survival signal pathway. Inhibition of ERK led to a decrease in GREM1-mediated rejuvenation in terms of cell survival, which suggests that an ERK-dependent pathway may be involved. Taken altogether, these results indicate that overexpression of GREM1 can allow aging hMPCs to adopt a more robust phenotype with improved survival capacity, which is associated with an activated ERK/NRF2 antioxidant signal pathway.


Asunto(s)
Antioxidantes , Células Madre Mesenquimatosas , Animales , Ratones , Humanos , Anciano , Antioxidantes/metabolismo , Regulación hacia Arriba/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo
17.
Environ Int ; 172: 107769, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36709676

RESUMEN

Exposure to ubiquitous plastic-associated endocrine disrupting chemicals (EDCs) is associated with the increased risk of many chronic diseases. For example, phthalate exposure is associated with cardiometabolic mortality in humans, with societal costs ∼ $39 billion/year or more. We recently demonstrated that several widely used plastic-associated EDCs increase cardiometabolic disease in appropriate mouse models. In addition to affecting adult health, parental exposure to EDCs has also been shown to cause metabolic disorders, including obesity and diabetes, in the offspring. While most studies have focused on the impact of maternal EDC exposure on the offspring's health, little is known about the effects of paternal EDC exposure. In the current study, we investigated the adverse impact of paternal exposure to a ubiquitous but understudied phthalate, dicyclohexyl phthalate (DCHP) on the metabolic health of F1 and F2 offspring in mice. Paternal DCHP exposure led to exacerbated insulin resistance and impaired insulin signaling in F1 offspring without affecting diet-induced obesity. We previously showed that sperm small non-coding RNAs including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs) contribute to the intergenerational transmission of paternally acquired metabolic disorders. Using a novel PANDORA-seq, we revealed that DCHP exposure can lead to sperm tsRNA/rsRNA landscape changes that were undetected by traditional RNA-seq, which may contribute to DCHP-elicited adverse effects. Lastly, we found that paternal DCHP can also cause sex-specific transgenerational adverse effects in F2 offspring and elicited glucose intolerance in female F2 descendants. Our results suggest that exposure to endocrine disrupting phthalates may have intergenerational and transgenerational adverse effects on the metabolic health of their offspring. These findings increase our understanding of the etiology of chronic human diseases originating from chemical-elicited intergenerational and transgenerational effects.


Asunto(s)
Enfermedades Metabólicas , Exposición Paterna , Humanos , Adulto , Ratones , Animales , Masculino , Femenino , Exposición Paterna/efectos adversos , Semen/metabolismo , Espermatozoides , Enfermedades Metabólicas/inducido químicamente , Obesidad/metabolismo
18.
Cells ; 12(14)2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37508578

RESUMEN

Sulfur mustard (SM) and nitrogen mustard (NM) are vesicant agents that cause skin injury and blistering through complicated cellular events, involving DNA damage, free radical formation, and lipid peroxidation. The development of therapeutic approaches targeting the multi-cellular process of tissue injury repair can potentially provide effective countermeasures to combat vesicant-induced dermal lesions. MG53 is a vital component of cell membrane repair. Previous studies have demonstrated that topical application of recombinant human MG53 (rhMG53) protein has the potential to promote wound healing. In this study, we further investigate the role of MG53 in NM-induced skin injury. Compared with wild-type mice, mg53-/- mice are more susceptible to NM-induced dermal injuries, whereas mice with sustained elevation of MG53 in circulation are resistant to dermal exposure of NM. Exposure of keratinocytes and human follicle stem cells to NM causes elevation of oxidative stress and intracellular aggregation of MG53, thus compromising MG53's intrinsic cell membrane repair function. Topical rhMG53 application mitigates NM-induced dermal injury in mice. Histologic examination reveals the therapeutic benefits of rhMG53 are associated with the preservation of epidermal integrity and hair follicle structure in mice with dermal NM exposure. Overall, these findings identify MG53 as a potential therapeutic agent to mitigate vesicant-induced skin injuries.


Asunto(s)
Irritantes , Mecloretamina , Ratones , Humanos , Animales , Mecloretamina/toxicidad , Mecloretamina/metabolismo , Irritantes/metabolismo , Queratinocitos/metabolismo , Cicatrización de Heridas/fisiología , Proteínas de la Membrana/metabolismo
19.
Neurosci Lett ; 810: 137350, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37327854

RESUMEN

Depression is a mental disease that seriously affects the quality of life. Its pathophysiology is complex and includes neuroinflammation and apoptosis. Virgin coconut oil (VCO) is a natural food that has been found to have remarkable anti-inflammatory and antiapoptotic properties. We assessed the effects of VCO on depression and the related mechanisms by performing network pharmacology analysis and evaluating depressive-like behaviors in rat model and found that VCO-treatment alleviated the depressive-like behaviors, inhibited microglial and astrocytic activation and reduced neuronal loss in the hippocampus, possibly by decreasing neuronal apoptosis. In addition, network pharmacology analysis and western blotting showed that VCO might exert neuroprotective effects by activating Protein Kinase B (AKT)-related pathway. Taken together, our results revealed the previously unrecognized effects of VCO on depression, and further explored the underlying mechanism of depression.


Asunto(s)
Depresión , Lipopolisacáridos , Ratas , Animales , Aceite de Coco/farmacología , Lipopolisacáridos/farmacología , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Farmacología en Red , Calidad de Vida
20.
Chaos ; 22(4): 043130, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23278065

RESUMEN

In this work, the logic stochastic resonance (LSR) phenomenon in a class of stochastic triple-well potential systems is investigated. Approximate Fokker-Planck equation is first obtained by using decoupling approximation. Then, we show that LSR can be successfully induced by additive or multiplicative Gaussian colored noise in some cases. In the absence of internal noise, LSR implementation seems impossible for a = 0 (The parameter a characterizes the depth of the potential well) since the two side wells are so deep that the particle cannot hop over the barrier into the middle well when the input signal is 0. With the increasing of a, the optimal noise band to yield flexible logic gates appears and moves to higher level of noise as the correlation time of noise increases. Compared with the Gaussian white noise, the reliable region in the parameter plane of potential depth parameter a and additive noise strength D first expands and then shrinks with increasing noise color. Furthermore, the effects of multiplicative Gaussian colored noise on LSR are investigated. It was found that the flexible and reliable logic behavior can be yielded for a = 0 due to the fact that the multiplicative Gaussian colored noise strongly affects the shape of the potential function. With the increasing of a, i.e., a = 0.25, multiplicative Gaussian white noise cannot yield desired logic behavior. Fortunately, LSR can also be expected by adjusting the correlation time of Gaussian colored noise. It can also be observed that the reliable region in the parameter plane of potential depth parameter a and multiplicative noise strength Q is small for the case of Gaussian white noise and it becomes larger with the increasing of noise color.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA