Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 22(5): 619-626, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37037960

RESUMEN

Methanol with 12.5 wt% H2 content is widely considered a liquid hydrogen medium. Taking into account water with 11.1 wt% H2 content, H2 synthesis from the mixture of water and methanol is a promising method for on-demand hydrogen production. We demonstrate an atomic-level catalyst design strategy using the synergy between single atoms and nanodots for H2 production. The PtCu-TiO2 sandwich photocatalyst achieves a remarkable H2 formation rate (2,383.9 µmol h-1) with a high apparent quantum efficiency (99.2%). Furthermore, the oxidation product is a high-value chemical formaldehyde with 98.6% selectivity instead of CO2, leading to a nearly zero-carbon-emission process. Detailed investigations indicate a dual role of the copper atoms: an electron acceptor to facilitate photoelectron transfer to Pt, and a hole acceptor for the selective oxidation of methanol to formaldehyde, thus avoiding over-oxidation to CO2. The synergy between Pt nanodots and Cu single atoms together reduces the activation energy of this process to 13.2 kJ mol-1.

2.
Nutr Cancer ; 76(8): 745-759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855943

RESUMEN

Objectives: This study investigates the role of Nicotinamide N-methyltransferase (NNMT) in immune infiltration modulation through amino acid metabolism in gastric adenocarcinoma (STAD). Methods: Utilizing data from The Cancer Genome Atlas (TCGA) and validated with clinical samples, we analyzed NNMT expression and its prognostic implications in STAD. Differential amino acid profiles between cancerous and adjacent normal tissues were assessed, along with their associations with NNMT. Results: NNMT exhibits heightened expression in STAD cancer tissues, positively correlating with tumor immune infiltration. Additionally, twenty-eight amino acids display differential expression in gastric tissue, with their metabolic enzymes showing connections to NNMT. Conclusions: Elevated NNMT expression in STAD tissues potentially influences amino acid metabolism, thereby affecting immune infiltration dynamics and tumorigenesis in gastric adenocarcinoma.


Asunto(s)
Adenocarcinoma , Aminoácidos , Nicotinamida N-Metiltransferasa , Neoplasias Gástricas , Nicotinamida N-Metiltransferasa/metabolismo , Nicotinamida N-Metiltransferasa/genética , Humanos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/inmunología , Adenocarcinoma/metabolismo , Aminoácidos/metabolismo , Pronóstico , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad
3.
Ecotoxicol Environ Saf ; 277: 116365, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657452

RESUMEN

Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Epigénesis Genética , Hipocampo , Plomo , Manganeso , Trastornos de la Memoria , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Epigénesis Genética/efectos de los fármacos , Manganeso/toxicidad , Plomo/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína Fosfatasa 2/metabolismo , Aprendizaje/efectos de los fármacos
4.
Angew Chem Int Ed Engl ; 62(43): e202307907, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37515455

RESUMEN

Carbon-carbon (C-C) coupling of organic halides has been successfully achieved in homogeneous catalysis, while the limitation, e.g., the dependence on rare noble metals, complexity of the metal-ligand catalylst and the poor catalyst stability and recyclability, needs to be tackled for a green process. The past few years have witnessed heterogeneous photocatalysis as a green and novel method for organic synthesis processes. However, the study on C-C coupling of chloride substrates is rare due to the extremely high bond energy of C-Cl bond (327 kJ mol-1 ). Here, we report a robust heterogeneous photocatalyst (Cu/ZnO) to drive the homo-coupling of benzyl chloride with high efficiency, which achieves an unprecedented high selectivity of bibenzyl (93 %) and yield rate of 92 % at room temperature. Moreover, this photocatalytic process has been validated for C-C coupling of 10 benzylic chlorides all with high yields. In addition, the excellent stability has been observed for 8 cycles of reactions. With detailed characterization and DFT calculation, the high selectivity is attributed to the enhanced adsorption of reactants, stabilization of intermediates (benzyl radicals) for the selective coupling by the Cu loading and the moderate oxidation ability of the ZnO support, besides the promoted charge separation and transfer by Cu species.

5.
Ecotoxicol Environ Saf ; 222: 112465, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34224972

RESUMEN

Single toxic metal exposure has been reported to be associated with impaired cognitive function, but less is known about the effects of combined exposure to multiple metals. The aim of the study was to investigate the potential associations and interactions of multiple metals with cognitive function in older adults using multi-pollutants approach. A cross-sectional study was conducted in a total of 2879 participants aged ≥ 60 years old. We systematically measured levels of 22 blood metals and used the Mini-Mental State Examination (MMSE) to assess the cognitive function. The least absolute shrinkage and selection operator (LASSO) penalized regression was applied to identify independently main metals. Adjusted estimates of cognitive function with selected metals were investigated by generalized linear regression in the multi-metal model. We found that calcium, titanium, vanadium, copper, zinc, arsenic, selenium, rubidium, molybdenum, cadmium, barium, and lead were independently identified based on LASSO penalized regression. The multi-metal model showed a higher MMSE of 0.384 (95% CI: 0.122-0.646) for a 1-SD increment in log-transformed rubidium and a lower MMSE of 0.460 (95% CI: - 0.706 to - 0.214) for a 1-SD increment in log-transformed cadmium (P < 0.05). The significantly negative associations between cadmium and cognitive function were attenuated to null accompanying with increasing concentrations of rubidium (P interaction = 0.256). Our findings suggested that blood rubidium and cadmium were mainly associated with cognitive function when accounting for co-exposure to other metals and higher level of rubidium appeared to attenuate the toxic effects of cadmium on cognitive function in older adults.


Asunto(s)
Arsénico , Exposición a Riesgos Ambientales , Anciano , Cognición , Estudios Transversales , Exposición a Riesgos Ambientales/análisis , Humanos , Metales/toxicidad , Persona de Mediana Edad
6.
Chem Soc Rev ; 49(12): 4135-4165, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32421139

RESUMEN

In the light of increasing energy demand and environmental pollution, it is urgently required to find a clean and renewable energy source. In these years, photocatalysis that uses solar energy for either fuel production, such as hydrogen evolution and hydrocarbon production, or environmental pollutant degradation, has shown great potential to achieve this goal. Among the various photocatalysts, covalent organic frameworks (COFs) are very attractive due to their excellent structural regularity, robust framework, inherent porosity and good activity. Thus, many studies have been carried out to investigate the photocatalytic performance of COFs and COF-based photocatalysts. In this critical review, the recent progress and advances of COF photocatalysts are thoroughly presented. Furthermore, diverse linkers between COF building blocks such as boron-containing connections and nitrogen-containing connections are summarised and compared. The morphologies of COFs and several commonly used strategies pertaining to photocatalytic activity are also discussed. Following this, the applications of COF-based photocatalysts are detailed including photocatalytic hydrogen evolution, CO2 conversion and degradation of environmental contaminants. Finally, a summary and perspective on the opportunities and challenges for the future development of COF and COF-based photocatalysts are given.

7.
Angew Chem Int Ed Engl ; 59(44): 19702-19707, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32584481

RESUMEN

Oxidative coupling of methane (OCM) is considered one of the most promising catalytic technologies to upgrade methane. However, C2 products (C2 H6 /C2 H4 ) from conventional methane conversion have not been produced commercially owing to competition from overoxidation and carbon accumulation at high temperatures. Herein, we report the codeposition of Pt nanoparticles and CuOx clusters on TiO2 (PC-50) and use of the resulting photocatalyst for OCM in a flow reactor operated at room temperature under atmospheric pressure for the first time. The optimized Cu0.1 Pt0.5 /PC-50 sample showed a highest yield of C2 product of 6.8 µmol h-1 at a space velocity of 2400 h-1 , more than twice the sum of the activity of Pt/PC-50 (1.07 µmol h-1 ) and Cu/PC-50 (1.9 µmol h-1 ), it might also be the highest among photocatalytic methane conversions reported so far under atmospheric pressure. A high C2 selectivity of 60 % is also comparable to that attainable by conventional high-temperature (>943 K) thermal catalysis. It is proposed that Pt functions as an electron acceptor to facilitate charge separation, while holes could transfer to CuOx to avoid deep dehydrogenation and the overoxidation of C2 products.

8.
J Cell Biochem ; 120(8): 12259-12272, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31017699

RESUMEN

Emerging evidence indicates that microRNAs (miRNAs) play an important role in tumor carcinogenesis and progression by targeting gene expression. The goal of this study was to comprehensively analyze the vital functional miRNAs and their target genes in esophageal squamous cell carcinoma (ESCC) and to explore the clinical significance and mechanisms of miR-1 in ESCC. First, the miRNA and messenger RNA (mRNA) expression profiles of ESCC were determined with microarray technology. Using an integrated analysis of miRNAs and their target genes with multistep bioinformatics methods, the miRNA-mRNA regulatory network in ESCC was constructed. Next, miR-1 expression in 292 ESCC patients and its relationship with clinicopathological features and prognosis were detected by in situ hybridization. Furthermore, the biological functions of miR-1 were determined with in vitro and in vivo functional experiments. Finally, real-time quantitative reverse transcription polymerase chain reaction, Western blot analysis, and luciferase reporter assays were performed to verify the target genes of miR-1. In this study, 67 miRNAs and 2992 genes were significantly differentially expressed in ESCC tissues compared with their expression in adjacent normal tissues, and an miRNA-mRNA regulatory network comprising 59 miRNAs and 162 target mRNAs was identified. Low miR-1 expression was correlated with pathological T stage, lymph node metastasis, vessel invasion, and poor clinical outcome. miR-1 suppressed ESCC cell proliferation and invasion and promoted ESCC cell apoptosis. Fibronectin 1 (FN1) was verified as a direct target of miR-1. Taken together, the present results suggest that miR-1 may be a valuable prognostic predictor for ESCC, and the miR-1/FN1 axis may be a therapeutic target.


Asunto(s)
Biomarcadores de Tumor/genética , Progresión de la Enfermedad , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/metabolismo , Animales , Apoptosis/genética , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Fibronectinas/genética , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Análisis Multivariante , Invasividad Neoplásica , Modelos de Riesgos Proporcionales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell Biol Int ; 42(9): 1182-1191, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29752834

RESUMEN

Mammalian target of rapamycin (mTOR) is a Ser/Thr protein kinase that functions as an ATP and amino acid sensor to govern cell growth and proliferation by mediating mitogen- and nutrient-dependent signal transduction. Protein phosphatase 2A (PP2A), a ubiquitously expressed serine/threonine phosphatase, negatively regulates mTOR signaling. Methylation of PP2A is catalyzed by leucine carboxyl methyltransferase-1 (LCMT1) and reversed by protein phosphatase methylesterase 1 (PME-1), which regulates PP2A activity and substrate specificity. However, whether PP2A methylation is related to mTOR signaling is still unknown. In this study, we examined the effect of PP2A methylation on mTOR signaling in HEK293 cells under oxidative stress. Our results show that oxidative stress induces PP2A demethylation and inhibits the mTORC1 signaling pathway. Next, we examined two strategies to block PP2A demethylation under oxidative stress. One strategy was to prevent PP2A demethylation using a PME-1 inhibitor; the other strategy was to activate PP2A methylation via overexpression of LCMT1. The results show that both the PME-1 inhibitor and LCMT1 overexpression prevent the mTORC1 signaling suppression induced by oxidative stress. Additionally, LCMT1 overexpression rescued cell viability and the mitochondrial membrane potential decrease in response to oxidative stress. These results demonstrate that H2 O2 induces PP2A demethylation to downregulate mTORC1 signaling. These findings provide a novel mechanism for the regulation of PP2A demethylation and mTORC1 signaling under oxidative stress.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Fosfatasa 2/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Desmetilación/efectos de los fármacos , Regulación hacia Abajo , Células HEK293 , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fosforilación , Proteína O-Metiltransferasa/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
10.
Biochem Biophys Res Commun ; 494(3-4): 491-498, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29066346

RESUMEN

PP2Acα2 is a recently discovered PP2Acα alternative splicing isoform that can be induced following serum withdrawal. It shows enhanced binding to immunoglobulin binding protein 1 and is overexpressed in chronic lymphocytic leukemia patients. Current knowledge concerning PP2Acα2 is limited. In this study, we induced and cloned PP2Acα2 from HL-60 cells and human lymphocytes, transfected them into human embryonic kidney 293 cells and constructed a stable overexpression cell line. We found that PP2Acα2 mRNA inhibits expression of its longer isoform PP2Acα mRNA but had no effect on the final protein expression and modification of this longer isoform. Moreover, PP2Acα2-overexpressed cells demonstrated increased expression of IGBP1, activated mTORC1 signaling to reduce basal autophagy and increased anchorage-independent growth. Our study provides new insights into the complex mechanisms of PP2A regulation.


Asunto(s)
Empalme Alternativo/fisiología , Autofagia/fisiología , Isoenzimas/metabolismo , Proteína Fosfatasa 2/metabolismo , Catálisis , Dominio Catalítico/fisiología , Células HL-60 , Humanos , Subunidades de Proteína/metabolismo , Regulación hacia Arriba/fisiología
11.
J Biomed Sci ; 21: 51, 2014 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-24885898

RESUMEN

BACKGROUND: Excessive manganese exposure induced cognitive deficit. Several lines of evidence have demonstrated that taurine improves cognitive impairment induced by numerous neurotoxins. However, the role of taurine on manganese-induced damages in learning and memory is still elusive. This goal of this study was to investigate the beneficial effect of taurine on learning and memory capacity impairment by manganese exposure in an animal model. RESULTS: The escape latency in the Morris Water Maze test was significantly longer in the rats injected with manganese than that in the rats received both taurine and manganese. Similarly, the probe trial showed that the annulus crossings were significantly greater in the taurine plus manganese treated rats than those in the manganese-treated rats. However, the blood level of manganese was not altered by the taurine treatment. Interestingly, the exposure of manganese led to a significant increase in the acetylcholinesterase activity and an evidently decrease in the choline acetyltransferase activity, which were partially restored by the addition of taurine. Additionally, we identified 9 differentially expressed proteins between the rat hippocampus treated by manganese and the control or the manganese plus taurine in the proteomic analysis using the 2-dimensional gel electrophoresis followed by the tandem mass spectrometry (MS/MS). Most of these proteins play a role in energy metabolism, oxidative stress, inflammation, and neuron synapse. CONCLUSIONS: In summary, taurine restores the activity of AChE and ChAT, which are critical for the regulation of acetylcholine. We have identified seven differentially expressed proteins specifically induced by manganese and two proteins induced by taurine from the rat hippocampus. Our results support that taurine improves the impaired learning and memory ability caused by excessive exposure of manganese.


Asunto(s)
Acetilcolinesterasa/biosíntesis , Colina O-Acetiltransferasa/biosíntesis , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Taurina/administración & dosificación , Acetilcolina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Manganeso/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Espectrometría de Masas en Tándem
12.
Zhonghua Yu Fang Yi Xue Za Zhi ; 48(8): 720-5, 2014 Aug.
Artículo en Zh | MEDLINE | ID: mdl-25388470

RESUMEN

OBJECTIVE: To investigate the effect of poly-ADP-ribosylation in hexavalent chromium Cr(VI) induced cell damage. METHODS: The study object, poly (ADP-ribose) glycohydrolase (PARG) deficient human bronchial epithelial cells (16HBE cells), was constructed previously by our research group. Normal 16HBE cells and PARG-deficient cells were treated with different doses of Cr (VI) for 24 h to compare the differences to Cr (VI) toxicity, meanwhile set up the solvent control group. On this basis, 5.0 µmol/L of Cr (VI) was selected as the exposure dose, after the exposure treatment, total proteins of both cells were extracted for two dimension fluorescence difference gel electrophoresis (2D-DIGE) separation, statistically significant differential protein spots were screened and identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS), and further validated by Western blot. RESULTS: After Cr (VI) treatment, the survival rate of PARG-deficient cells was higher than normal 16HBE cells. When the doses reached up to 5.0 µmol/L, the survival rate of 16HBE cells and PARG-deficient cells were respectively (59.67 ± 6.43)% and (82.00 ± 6.25)%, the difference between which was significant (t = -4.32, P < 0.05). 18 protein spots were selected and successfully identified after 2D-DIGE comparison of differential proteins between normal 16HBE cells and PARG-deficient cells before and after exposure. The function of those proteins was involved in the maintenance of cell shape, energy metabolism, DNA damage repair and regulation of gene expression. The differential expression of cofilin-1 was successfully validated by Western blot. The expression level of cofilin-1 in the 16HBE cells increased after Cr (VI) exposure with the relative expression quantity of 1.41 ± 0.04 in treated group and 1.00 ± 0.01 in control group, the difference of which was statistically significant (t = -18.00, P < 0.05), while the expression level in PARG-deficient cells had no statistically significant difference (t = -8.61, P > 0.05). CONCLUSION: Most of the identified differential proteins are closely related to tumorigenesis, suggesting that poly-ADP-ribosylation reaction may resist the cytotoxicity of Cr(VI) by inhibiting Cr (VI) induced tumorigenesis, which provides important reference data to clarify the mechanisms of poly-ADP-ribosylation in Cr (VI) induced cell damage.


Asunto(s)
Transformación Celular Neoplásica/genética , Glicósido Hidrolasas/deficiencia , Glicósido Hidrolasas/fisiología , Bronquios , Cromo , Cofilina 1 , Reparación del ADN , Células Epiteliales , Humanos , Espectrometría de Masas en Tándem
13.
ACS Catal ; 13(6): 3768-3774, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36970465

RESUMEN

Oxidation of methane into valuable chemicals, such as C2+ molecules, has been long sought after but the dilemma between high yield and high selectivity of desired products remains. Herein, methane is upgraded through the photocatalytic oxidative coupling of methane (OCM) over a ternary Ag-AgBr/TiO2 catalyst in a pressurized flow reactor. The ethane yield of 35.4 µmol/h with a high C2+ selectivity of 79% has been obtained under 6 bar pressure. These are much better than most of the previous benchmark performance in photocatalytic OCM processes. These results are attributed to the synergy between Ag and AgBr, where Ag serves as an electron acceptor and promotes the charge transfer and AgBr forms a heterostructure with TiO2 not only to facilitate charge separation but also to avoid the overoxidation process. This work thus demonstrates an efficient strategy for photocatalytic methane conversion by both the rational design of the catalyst for the high selectivity and reactor engineering for the high conversion.

14.
Nat Commun ; 14(1): 4431, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481611

RESUMEN

Phenol is one of the most important fine chemical intermediates in the synthesis of plastics and drugs with a market size of ca. $30b1 and the commercial production is via a two-step selective oxidation of benzene, requiring high energy input (high temperature and high pressure) in the presence of a corrosive acidic medium, and causing serious environmental issues2-5. Here we present a four-phase interface strategy with well-designed Pd@Cu nanoarchitecture decorated TiO2 as a catalyst in a suspension system. The optimised catalyst leads to a turnover number of 16,000-100,000 for phenol generation with respect to the active sites and an excellent selectivity of ca. 93%. Such unprecedented results are attributed to the efficient activation of benzene by the atomically Cu coated Pd nanoarchitecture, enhanced charge separation, and an oxidant-lean environment. The rational design of catalyst and reaction system provides a green pathway for the selective conversion of symmetric organic molecules.

15.
Front Nutr ; 10: 1058764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937253

RESUMEN

Background: Food sociality refers to the exploration of food production, exchange, distribution, and consumption and influences on cultural communication and social meaning. This study aimed to investigate food sociality in three provinces of South China to provide theoretical and practical evidence of food sociality in the region and to revise nutrition policies. Materials and methods: We conducted a qualitative study comprising 25 experts in the fields of nutrition, sociology, food science, and agriculture from Hainan, Guangdong, and Guangxi Province by using a semi-structured in-depth interview, which included 28 pre-determined questions covering six topics. The interviews were conducted between November 2020 and March 2021. Verbatim transcripts were analyzed thematically using NVivo 11.0. Results: Of the 25 experts, the mean age was 50.6 (SD = 8.4) years, 15 (60%) were male, and 22 (88%) held a master's degree or above. The analysis showed that food sociality in three provinces of South China mainly comprises social functions of food and dietary behavior. Regarding social functions of food, the experts expressed that food represents local culture (72%, 18 experts), presents social status and economic power (40%, 10 experts), and is central to special occasions, traditional customs, and etiquette activities (60%, 15 experts). In terms of social functions of dietary behaviors, the majority of experts indicated that food is a social communication tool (72% experts), has geographical characteristics (80% experts), and, to some extent, is used as a proxy for reward or punishment. Furthermore, festivals are one of the core elements of food sociality in the region, although food safety is a major concern. Some dietary behaviors, such as overindulgence in afternoon tea and encouraging drinking, may increase the risk of chronic diseases. Conclusion: Food sociality in three provinces of South China is mainly related to the social function of food and dietary behavior. It is a combination of local culture, social status and economic power, traditional customs, rewards and punishments, geographical food preference, and social communication tools. The authors recommend increasing food safety at festivals and promoting healthy eating behaviors in order to improve the overall health of the population in this region.

16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(6): 488-493, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37340916

RESUMEN

Objective To investigate the molecular mechanism of taurine regulating the polarization of M2 macrophages by mitophagy. Methods THP-1 cells were divided into four groups: M0 group (THP-1 cells were treated by 100 nmol/L phorbol myristate ester for 48 hours to polarize into M0), M2 group (THP-1 cells were induced to polarize into M2 macrophages by 20 ng/mL interferon-4 (IL-4) for 48 hours), M2 combined with taurine groups (added with 40 or 80 mmol/L taurine on the basis of M2 macrophages). The mRNA expression of mannose receptor C type 1(MRC-1), C-C motif chemokine ligand 22(CCL22) and dendritic cell-specific ICAM-3 grabbing non-integrin (CD209) in M2 macrophages were detected by quantitative real-time PCR. Mitochondrial and lysosome probes were used to detect the number of mitochondria and lysosomes by multifunction microplate reader and confocal laser scanning microscope. The level of mitochondrial membrane potential (MMP) was detected by JC-1 MMP assay kit. The expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3) were detected by Western blot analysis. Results Compared with M0 group, the expression of MRC-1, CCL22, CD209 and PINK1, the number of mitochondria and the level of MMP in M2 group were significantly increased, whereas the number of lysosomes and LC3II/LC3I ratio were decreased. Compared with M2 group, the expressions of MRC-1, CCL22 and CD209, the number of mitochondria and the level of MMP in M2 combined with taurine group dropped significantly while the number of lysosomes was found increased, and the protein expression of PINK1 and LC3II/LC3I ratio were also increased. Conclusions The polarization of M2 macrophages is regulated by taurine to prevent excessive polarization via reducing the level of MMP, improving the level of mitophagy, reducing the number of mitochondria, and inhibiting the mRNA expression of polarization markers in M2 macrophages.


Asunto(s)
Mitofagia , Taurina , Macrófagos/metabolismo , Proteínas Quinasas/metabolismo , ARN Mensajero
17.
Nat Commun ; 14(1): 6343, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816721

RESUMEN

Methane activation by photocatalysis is one of the promising sustainable technologies for chemical synthesis. However, the current efficiency and stability of the process are moderate. Herein, a PdCu nanoalloy (~2.3 nm) was decorated on TiO2, which works for the efficient, stable, and selective photocatalytic oxidative coupling of methane at room temperature. A high methane conversion rate of 2480 µmol g-1 h-1 to C2 with an apparent quantum efficiency of ~8.4% has been achieved. More importantly, the photocatalyst exhibits the turnover frequency and turnover number of 116 h-1 and 12,642 with respect to PdCu, representing a record among all the photocatalytic processes (λ > 300 nm) operated at room temperature, together with a long stability of over 112 hours. The nanoalloy works as a hole acceptor, in which Pd softens and weakens C-H bond in methane and Cu decreases the adsorption energy of C2 products, leading to the high efficiency and long-time stability.

18.
Transl Oncol ; 27: 101572, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36401967

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant type of cancers. Leuci carboxyl methyltransferase 1 (LCMT1) is a protein methyltransferase that plays an improtant regulatory role in both normal and cancer cells. The aim of this study is to evaluate the expression pattern and clinical significance of LCMT1 in HCC. METHODS: The expression pattern and clinical relevance of LCMT1 were determined using the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) program, and our datasets. Gain-of-function and loss-of-function studies were employed to investigate the cellular functions of LCMT1 in vitro and in vivo. Quantitative real-time polymerase chain reaction (RT-PCR) analysis, western blotting, enzymatic assay, and high-performance liquid chromatography were applied to reveal the underlying molecular functions of LCMT1. RESULTS: LCMT1 was upregulated in human HCC tissues, which correlated with a "poor" prognosis. The siRNA-mediated knockdown of LCMT1 inhibited glycolysis, promoted mitochondrial dysfunction, and increased intracellular pyruvate levels by upregulating the expression of alani-neglyoxylate and serine-pyruvate aminotransferase (AGXT). The overexpression of LCMT1 showed the opposite results. Silencing LCMT1 inhibited the proliferation of HCC cells in vitro and reduced the growth of tumor xenografts in mice. Mechanistically, the effect of LCMT1 on the proliferation of HCC cells was partially dependent on PP2A. CONCLUSIONS: Our data revealed a novel role of LCMT1 in the proliferation of HCC cells. In addition, we provided novel insights into the effects of glycolysis-related pathways on the LCMT1regulated progression of HCC, suggesting LCMT1 as a novel therapeutic target for HCC therapy.

19.
J Nutr Biochem ; 117: 109321, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36963730

RESUMEN

Impaired glucose regulation is one of the most important risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which have become a major public health issue worldwide. Dysregulation of carbohydrate metabolism in liver has been shown to play a critical role in the development of glucose intolerance but the molecular mechanism has not yet been fully understood. In this study, we investigated the role of hepatic LCMT1 in the regulation of glucose homeostasis using a liver-specific LCMT1 knockout mouse model. The hepatocyte-specific deletion of LCMT1 significantly upregulated the hepatic glycogen synthesis and glycogen accumulation in liver. We found that the liver-specific knockout of LCMT1 improved high fat diet-induced glucose intolerance and insulin resistance. Consistently, the high fat diet-induced downregulation of glucokinase (GCK) and other important glycogen synthesis genes were reversed in LCMT1 knockout liver. In addition, the expression of GCK was significantly upregulated in MIHA cells treated with siRNA targeting LCMT1 and improved glycogen synthesis. In this study, we provided evidences to support the role of hepatic LCMT1 in the development of glucose intolerance induced by high fat diet and demonstrated that inhibiting LCMT1 could be a novel therapeutic strategy for the treatment of glucose metabolism disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Resistencia a la Insulina , Proteína O-Metiltransferasa , Ratones , Animales , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Dieta Alta en Grasa/efectos adversos , Leucina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Metiltransferasas/metabolismo , Proteína O-Metiltransferasa/metabolismo
20.
Food Chem Toxicol ; 179: 113986, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37579989

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a progressive disorder of liver metabolism and has become the most common chronic liver disease worldwide. Benzo[a]pyrene (BaP) is recognized as a potent carcinogen, but the effect of low-dose BaP on the development of NAFLD has not been well-studied, and its molecular mechanism is still unknown. In this study, we demonstrated that low-dose BaP induced hepatic steatosis in a mouse model with a notable increase in hepatic lipid content. Interestingly, mRNA expression of genes related to fatty acids uptake or synthesis was not significantly altered after BaP exposure. Instead, we found that low-dose BaP promoted lipid deposition in primary mouse hepatocytes by inhibiting autophagy, which was regulated through Leucine carboxyl methyltransferase-1 (LCMT1) mediated Protein Phosphatases 2A subunit C (PP2Ac) methylation. The role of LCMT1 in BaP-induced steatosis was further validated in a liver-specific lcmt1 knockout (L-LCMT1 KO) mouse model. In this study, we provided evidence to support a novel mechanism by which BaP induces the development of hepatic steatosis through PP2Ac mediated autophagy inhibition. These findings provided new insight into the pathogenesis of NAFLD induced by environmental exposure to low-dose BaP.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Benzo(a)pireno/metabolismo , Hígado , Fosfoproteínas Fosfatasas , Autofagia , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA