Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(33): e2407012121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102537

RESUMEN

Water resources are indispensable basic resources and important environmental carriers; the presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although the Fenton-like reactions using H2O2 as the oxidant to destroy organic pollutants are attractive, there are still challenges in improving reaction activity under neutral or even alkaline conditions. Herein, we designed a H2O2 activation pathway with O2•- as the main active species and elucidated that the spin interaction between Fe sites and coordinated O atoms effectively promotes the generation of the key intermediate Fe-*OOH. Furthermore, we successfully captured and analyzed the Fe-*OOH intermediate by in situ Raman spectroscopy. When applying FBOB to a continuous-flow reactor, CIP removal efficiency remained at around 90% within 600 min of continuous operation, achieving excellent efficiency, stability, and pH tolerance in removing pollutants.

2.
BMC Genomics ; 25(1): 670, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965476

RESUMEN

BACKGROUND: The TCP (teosinte branched1/cincinnata/proliferating cell factor) family plays a prominent role in plant development and stress responses. However, TCP family genes have thus far not been identified in castor bean, and therefore an understanding of the expression and functional aspects of castor bean TCP genes is lacking. To identify the potential biological functions of castor bean (RcTCP) TCP members, the composition of RcTCP family members, their basic physicochemical properties, subcellular localizations, interacting proteins, miRNA target sites, and gene expression patterns under stress were assessed. RESULTS: The presence of 20 RcTCP genes on the nine chromosomes of castor bean was identified, all of which possess TCP domains. Phylogenetic analysis indicated a close relationship between RcTCP genes and Arabidopsis AtTCP genes, suggesting potential functional similarity. Subcellular localization experiments confirmed that RcTC01/02/03/10/16/18 are all localized in the nucleus. Protein interaction analysis revealed that the interaction quantity of RcTCP03/06/11 proteins is the highest, indicating a cascade response in the functional genes. Furthermore, it was found that the promoter region of RcTCP genes contains a large number of stress-responsive elements and hormone-induced elements, indicating a potential link between RcTCP genes and stress response functions. qRT-PCR showed that all RcTCP genes exhibit a distinct tissue-specific expression pattern and their expression is induced by abiotic stress (including low temperature, abscisic acid, drought, and high salt). Among them, RcTCP01/03/04/08/09/10/14/15/18/19 genes may be excellent stress-responsive genes. CONCLUSION: We discovered that RcTCP genes play a crucial role in various activities, including growth and development, the stress response, and transcription. This study provides a basis for studying the function of RcTCP gene in castor.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Ricinus communis , Estrés Fisiológico , Estrés Fisiológico/genética , Ricinus communis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica
3.
Gen Comp Endocrinol ; 347: 114435, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135222

RESUMEN

The G Protein-Coupled Receptor (GPCR) superfamily is the largest and most diverse transmembrane receptor family, playing crucial roles in regulating various physiological processes. As one of the most destructive pests, aphids have been subject to previous studies, which revealed fewer GPCR superfamily members in Acyrthosiphon pisum and Aphis gossypii and the loss of multiple neuropeptide GPCRs. To elucidate the contraction patterns and evolutionary features of the aphid GPCR superfamily, we identified 97, 105, and 95 GPCR genes in Rhopalosiphum maidis, A. pisum, and A. gossypii, respectively. Comparative analysis and phylogenetic investigations with other hemipteran insects revealed a contracted GPCR superfamily in aphids. This contraction mainly occurred in biogenic amine receptors, GABA-B-R, and fz families, and several neuropeptide receptors such as ACPR, CrzR, and PTHR were completely lost. This phenomenon may be related to the parasitic nature of aphids. Additionally, several GPCRs associated with aphid feeding and water balance underwent duplication, including Lkr, NPFR, CCHa1-R, and DH-R, Type A LGRs, but the SK/CCKLR that inhibits feeding was completely lost, indicating changes in feeding genes that underpin the aphid's prolonged phloem feeding behavior. Furthermore, we observed fine-tuning in opsins, with reduced long-wavelength opsins and additional duplications of short-wavelength opsin, likely associated with daytime activity. Lastly, we found variations in the number of mthl genes in aphids. In conclusion, our investigation sheds light on the GPCR superfamily in aphids, revealing its association with diet lifestyle and laying the foundation for understanding and developing control strategies for the aphid GPCR superfamily.


Asunto(s)
Áfidos , Animales , Áfidos/genética , Filogenia , Floema , Conducta Alimentaria/fisiología , Receptores Acoplados a Proteínas G/genética , Opsinas/genética
4.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810250

RESUMEN

Arising from reduced dielectric screening, excitonic effects should be taken into account in ultrathin two-dimensional photocatalysts, and a significant challenge is achieving nontrivial excitonic regulation. However, the effect of structural modification on the regulation of the excitonic aspect is at a comparatively early stage. Herein, we report unusual effects of surface substitutional doping with Pt on electronic and surface characteristics of atomically thin layers of Bi3O4Br, thereby enhancing the propensity to generate 1O2 Electronically, the introduced Pt impurity states with a lower energy level can trap photoinduced singlet excitons, thus reducing the singlet-triplet energy gap by ∼48% and effectively facilitating the intersystem crossing process for efficient triplet excitons yield. Superficially, the chemisorption state of O2 causes the changes in the magnetic moment (i.e., spin state) of O2 through electron-mediated triplet energy transfer, resulting a spontaneous spin-flip process and highly specific 1O2 generation. These traits exemplify the opportunities that the surface engineering provides a unique strategy for excitonic regulation and will stimulate more research on exciton-triggering photocatalysis for solar energy conversion.

5.
Insect Mol Biol ; 32(6): 676-688, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37462221

RESUMEN

Alpha-ketoglutarate-dependent dioxygenase ALKB homologue 4 (ALKBH4) is a member of the Fe (II) and 2-oxoglutarate-dependent ALKB homologue family that plays important roles in epigenetic regulation by alkyl lesions removal in mammals. However, the roles of ALKBH4 in insects are not clear. Here, TcALKBH4 was cloned and functionally characterised in Tribolium castaneum. Temporal expression revealed that TcALKBH4 was highly expressed in early embryos and early pupae. Spatial expression showed that TcALKBH4 was highly expressed in the adult testis, and followed by the ovary. RNA interference targeting TcALKBH4 at different developmental stages in T. castaneum led to apparent phenotypes including the failure of development in larvae, the reduction of food intake and the deficiency of fertility in adult. However, further dot blot analyses showed that TcALKBH4 RNAi does not seem to influence 6 mA levels in vivo. qRT-PCR was used to further explore the underlying molecular mechanisms; the result showed that TcALKBH4 mediates the development of larvae possibly through 20E signalling pathway, and the fertility of female and male adult might be regulated by the expression of vitellogenesis and JH signalling pathway, respectively. Altogether, these findings will provide new insights into the potential function of ALKBH4 in insects.


Asunto(s)
Escarabajos , Tribolium , Femenino , Masculino , Animales , Tribolium/genética , Epigénesis Genética , Larva/genética , Interferencia de ARN , Mamíferos
6.
Angew Chem Int Ed Engl ; 62(23): e202303807, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37062701

RESUMEN

Molecular oxygen (O2 ) activation technology is of great significance in environmental purification due to its eco-friendly operation and cost-effective nature. However, the activation of O2 is limited by spin-forbidden transitions, and efficient molecular oxygen activation depends on electronic behavior and surface adsorption. Herein, we prepared cationic defect-rich Bi4 Ti3 O12 (BTO-MV2) catalysts containing Ti vacancies (VTi ) for O2 activation in water purification. The VTi on BTO nanosheets can induce electron spin polarization, increasing the number of spin-down photogenerated electrons and reducing the recombination of electron-hole pairs. An active surface VTi is also formed, serving as a center for adsorbing O2 and extracting electrons, effectively generating ⋅OH, O2 ⋅- and 1 O2 . The degradation rate constant of tetracycline achieved by BTO-MV2 is 3.3 times faster than BTO, indicating a satisfactory prospect for practical application. This work provides an efficient pathway to activate molecular oxygen by constructing new active sites through cationic vacancy modification technology.

7.
J Am Chem Soc ; 144(37): 17075-17085, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069726

RESUMEN

Selective hydrogenation with high efficiency under ambient conditions remains a long-standing challenge. Here, a yolk-shell nanostructured catalyst, PdAg@ZIF-8, featuring plasmonic PdAg nanocages encompassed by a metal-organic framework (MOF, namely, ZIF-8) shell, has been rationally fabricated. PdAg@ZIF-8 achieves selective (97.5%) hydrogenation of nitrostyrene to vinylaniline with complete conversion at ambient temperature under visible light irradiation. The photothermal effect of Ag, together with the substrate enrichment effect of the catalyst, improves the Pd activity. The near-field enhancement effect from plasmonic Ag and optimized Pd electronic state by Ag alloying promote selective adsorption of the -NO2 group and therefore catalytic selectivity. Remarkably, the unique yolk-shell nanostructure not only facilitates access to PdAg cores and protects them from aggregation but also benefits substrate enrichment and preferential -NO2 adsorption under light irradiation, the latter two of which surpass the core-shell counterpart, giving rise to enhanced activity, selectivity, and recyclability.

8.
Hum Brain Mapp ; 43(7): 2121-2133, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35165964

RESUMEN

This study sought to identify a reference tissue-based quantification approach for improving the statistical power in detecting changes in brain glucose metabolism, amyloid, and tau deposition in Alzheimer's disease studies. A total of 794, 906, and 903 scans were included for 18 F-FDG, 18 F-florbetapir, and 18 F-flortaucipir, respectively. Positron emission tomography (PET) and T1-weighted images of participants were collected from the Alzheimer's disease Neuroimaging Initiative database, followed by partial volume correction. The standardized uptake value ratios (SUVRs) calculated from the cerebellum gray matter, centrum semiovale, and pons were evaluated at both region of interest (ROI) and voxelwise levels. The statistical power of reference tissues in detecting longitudinal SUVR changes was assessed via paired t-test. In cross-sectional analysis, the impact of reference tissue-based SUVR differences between cognitively normal and cognitively impaired groups was evaluated by effect sizes Cohen's d and two sample t-test adjusted by age, sex, and education levels. The average ROI t values of pons were 86.62 and 38.40% higher than that of centrum semiovale and cerebellum gray matter in detecting glucose metabolism decreases, while the centrum semiovale reference tissue-based SUVR provided higher t values for the detection of amyloid and tau deposition increases. The three reference tissues generated comparable d images for 18 F-FDG, 18 F-florbetapir, and 18 F-flortaucipir and comparable t maps for 18 F-florbetapir and 18 F-flortaucipir, but pons-based t map showed superior performance in 18 F-FDG. In conclusion, the tracer-specific reference tissue improved the detection of 18 F-FDG, 18 F-florbetapir, and 18 F-flortaucipir PET SUVR changes, which helps the early diagnosis, monitoring of disease progression, and therapeutic response in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Carbolinas , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Estudios Transversales , Glicoles de Etileno , Fluorodesoxiglucosa F18/metabolismo , Glucosa/metabolismo , Humanos , Tomografía de Emisión de Positrones/métodos
9.
Mol Genet Genomics ; 297(3): 801-815, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35419714

RESUMEN

Eugenol, a plant-derived component possessing small side effects, has an insecticidal activity to Tribolium castaneum; however, the underlying molecular mechanisms of eugenol acting on T. castaneum are currently unclear. Here, a nerve conduction carboxylesterase and a detoxifying glutathione S-transferase were significantly inhibited after eugenol exposure, resulting in the paralysis or death of beetles. Then, RNA-sequencing of eugenol-exposed and control samples identified 362 differentially expressed genes (DEGs), containing 206 up-regulated and 156 down-regulated genes. RNA-seq data were validated further by qRT-PCR. GO analysis revealed that DEGs were associated with 1308 GO terms of which the most enriched GO terms were catalytic activity, and integral component of membrane; KEGG pathway analysis showed that these DEGs were distributed in 151 different pathways, of which some pathways associated with metabolism of xenobiotics or drug were significantly enriched, which indicated that eugenol most likely disturbed the processes of metabolism, and detoxication. Moreover, several DEGs including Hexokinase type 2, Isocitrate dehydrogenase, and Cytochrome b-related protein, might participate in the respiratory metabolism of eugenol-exposed beetles. Some DEGs encoding CYP, UGT, GST, OBP, CSP, and ABC transporter were involved in the xenobiotic or drug metabolism pathway, which suggested that these genes of T. castaneum participated in the response to eugenol exposure. Additionally, TcOBPC11/ TcGSTs7, detected by qRT-PCR and RNA-interference against these genes, significantly increased the mortality of eugenol-treated T. castaneum, providing further evidence for the involvement of OBP/GST in eugenol metabolic detoxification in T. castaneum. These results aid eugenol insecticidal mechanisms and provide the basis of insect control.


Asunto(s)
Tribolium , Animales , Eugenol/metabolismo , Eugenol/farmacología , ARN , Análisis de Secuencia de ARN , Tribolium/genética , Tribolium/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacología
10.
Small ; 18(7): e2104934, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35018715

RESUMEN

In the past decade, atomically dispersed Fe active sites (coordinated with nitrogen) on carbon materials (FeNC) have emerged rapidly as promising single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) to substitute precious group metal (PGM) catalysts, owing to their earth abundance and low cost. Nonetheless, the production of highly active FeNC SACs is largely restricted by material cost, low product yield and difficulty of microstructure design. Herein, the authors demonstrate a facile in-situ xerogel (ISG) assisted synthetic strategy, using cheap materials, to construct FeNC SACs (ISG FeNC). The porous silica xerogel, formed in-situ with the FeNC precursors, encourages the emergence of enormous micropores/mesopores and homogeneous confinement/protection to the precursors during pyrolysis, benefiting to the formation of abundant accessible active sites (27.6 × 1019 sites g-1 ). Correspondingly, the ISG FeNC exhibits excellent ORR activity with a half-wave potential (E1/2  = 0.91 V) in alkaline medium. The Zn-air battery assembled using the ISG FeNC SACs as the bifunctional catalyst of air cathode, demonstrates commendable performance with high peak power density of 249.1 mW cm-2 and superior long-term stability (660 cycles with 220 h). This work offers an economic and efficient way to fabricate PGM-free SACs for diverse applications.

11.
Brain ; 144(10): 3201-3211, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33876815

RESUMEN

Recent studies in cognitively unimpaired elderly individuals suggest that the APOE ε4 allele exerts a dosage-dependent effect on brain tau deposition. The aim of this study was to investigate sex differences in APOE ε4 gene dosage effects on brain tau deposition in cognitively impaired individuals using quantitative 18F-flortaucipir PET. Preprocessed 18F-flortaucipir tau PET images, T1-weighted structural MRI, demographic information, global cortical amyloid-ß burden measured by 18F-florbetapir PET, CSF total tau and phosphorylated tau measurements were obtained from the Alzheimer's Disease Neuroimaging Initiative database. Two hundred and sixty-eight cognitively impaired individuals with 146 APOE ε4 non-carriers and 122 carriers (85 heterozygotes and 37 homozygotes) were included in the study. An iterative reblurred Van Cittert iteration partial volume correction method was applied to all downloaded PET images. Magnetic resonance images were used for PET spatial normalization. Twelve regional standardized uptake value ratios relative to the cerebellum were computed in standard space. APOE ε4 dosage × sex interaction effect on 18F-flortaucipir standardized uptake value ratios was assessed using generalized linear models and sex-stratified analysis. We observed a significant APOE ε4 dosage × sex interaction effect on tau deposition in the lateral temporal, posterior cingulate, medial temporal, inferior temporal, entorhinal cortex, amygdala, parahippocampal gyrus regions after adjusting for age and education level (P < 0.05). The medial temporal, entorhinal cortex, amygdala and parahippocampal gyrus regions retained a significant APOE ε4 dosage × sex interaction effect on tau deposition after adjusting for global cortical amyloid-ß (P < 0.05). In sex-stratified analysis, there was no significant difference in tau deposition between female homozygotes and heterozygotes (P > 0.05). In contrast, male homozygotes standardized uptake value ratios were significantly greater than heterozygotes or non-carriers throughout all 12 regions of interest (P < 0.05). Female heterozygotes exhibited significantly increased tau deposition compared to male heterozygotes in the orbitofrontal, posterior cingulate, lateral temporal, inferior temporal, entorhinal cortex, amygdala and parahippocampal gyrus (P < 0.05). Results from voxel-wise analysis were similar to the ones obtained from regions of interest analysis. Our findings indicate that an APOE ε4 dosage effect on brain region-specific tau deposition exists in males, but not females. These results have important clinical implications towards developing sex and genotype-guided therapeutics in Alzheimer's disease and uncovers a potential explanation underlying differential APOE ε4-associated Alzheimer's risk in males and females.


Asunto(s)
Apolipoproteína E4 , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Dosificación de Gen/fisiología , Caracteres Sexuales , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Apolipoproteína E4/genética , Disfunción Cognitiva/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Proteínas tau/genética
12.
Appl Microbiol Biotechnol ; 106(5-6): 1919-1932, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35179629

RESUMEN

Partially hydrolyzed konjac powder (PHKP) can be used to increase the daily intake of dietary fibers of consumers. To produce PHKP by enzymatic hydrolysis, a novel ß-mannanase gene (McMan5B) from Malbranchea cinnamomea was expressed in Pichia pastoris. It showed a low identity of less than 52% with other GH family 5 ß-mannanases. Through high cell density fermentation, the highest ß-mannanase activity of 42200 U mL-1 was obtained. McMan5B showed the maximal activity at pH 7.5 and 75 °C, respectively. It exhibited excellent pH stability and thermostability. Due to the different residues (Phe214, Pro253, and His328) in catalytic groove and the change of ß2-α2 loop, McMan5B showed unique hydrolysis property as compared to other ß-mannanases. The enzyme was employed to hydrolyze konjac powder for controllable production of PHKP with a weight-average molecular weight of 22000 Da (average degree of polymerization 136). Furthermore, the influence of PHKP (1.0%-4.0%) on the qualities of steamed bread was evaluated. The steamed bread adding 3.0% PHKP had the maximum specific volume and the minimum hardness, which showed 11.0% increment and 25.4% decrement as compared to the control, respectively. Thus, a suitable ß-mannanase for PHKP controllable production and a fiber supplement for steamed bread preparation were provided in this study. KEY POINTS: • A novel ß-mannanase gene (McMan5B) was cloned from Malbranchea cinnamomea and expressed in Pichia pastoris at high level. • McMan5B hydrolyzed konjac powder to yield partially hydrolyzed konjac powder (PHKP) instead of manno-oligosaccharides. • PHKP showed more positive effect on the quality of steamed bread than many other dietary fibers including konjac powder.


Asunto(s)
Amorphophallus , beta-Manosidasa , Amorphophallus/genética , Clonación Molecular , Concentración de Iones de Hidrógeno , Mananos/química , Onygenales , Pichia/genética , Polvos , beta-Manosidasa/química , beta-Manosidasa/genética
13.
Gen Comp Endocrinol ; 317: 113976, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35016911

RESUMEN

Spodoptera frugiperda (Insecta: Lepidoptera) is a destructive invasive pest feeding on various plants and causing serious damage to several economically-important crops. G protein-coupled receptors (GPCRs) are cellular receptors that coordinate diverse signaling processes, associated with many physiological processes and disease states. However, less information about GPCRs had been reported in S. frugiperda, limiting the recognition of signaling system and in-depth studies of this pest. Here, a total of 167 GPCRs were identified in S. frugiperda. Compared with other insects, the GPCRs of S. frugiperda were significantly expanded. A large of tandem duplication and segmental duplication events were observed, which may be the key factor to increase the size of GPCR family. In detail, these expansion events mainly concentrate on biogenic amine receptors, neuropeptide and protein hormone receptors, which may be involved in feeding, reproduction, life span, and tolerance of S. frugiperda. Additionally, 17 Mth/Mthl members were identified in S. frugiperda, which may be similar to the evolutionary pattern of 16 Mth/Mthl members in Drosophila. Moreover, the expression patterns across different developmental stages of all GPCR genes were also analyzed. Among these, most of the GPCR genes are poorly expressed in S. frugiperda and some highly expressed GPCR genes help S. frugiperda adapt to the environment better, such as Rh6 and AkhR. In this study, all GPCRs in S. frugiperda were identified for the first time, which provided a basis for further revealing the role of these receptors in the physiological and behavioral regulation of this pest.


Asunto(s)
Insectos , Neuropéptidos , Animales , Evolución Biológica , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Spodoptera/genética , Spodoptera/metabolismo
14.
Drug Chem Toxicol ; 45(3): 1432-1441, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34724865

RESUMEN

Pulmonary fibrosis (PF) is a progressive fibrosing disease, characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture, which finally result in respiratory failure. Currently, there is no satisfactory treatment for PF, therefore, the development of effective agents is urgently needed. Lotus plumule, the green embryo of Nelumbo nucifera Gaertn., a plant of the Nymphaeaceae family, is a traditional Chinese food with exceptional nutritional value and its extracts exert prominent anti-inflammatory and anti-fibrotic effects. The aim of the present study was to investigate the inhibitory effects of lotus plumule extracts (LPEs) on bleomycin (BLM)-induced PF in mice. Therefore, enzyme-linked immunosorbent assay, RT-PCR, and western blot analysis were performed. The histopathological examination demonstrated that LPEs could obviously decrease the degree of alveolitis, deposition of ECM and the production of collagen I (Col-I) in the pulmonary interstitium. In addition, the results showed that LPEs markedly alleviated the expression of interleukin (IL)-6, IL-17, transforming growth factor (TGF)-ß, and α-smooth muscle actin (α-SMA). Additionally, the content of Col-I and hydroxyproline (HYP) was also attenuated. In conclusion, LPEs could ameliorate the BLM-induced lung fibrosis, thus suggesting that LPEs could serve as a potential therapeutic approach for PF.


Asunto(s)
Medicamentos Herbarios Chinos , Lotus , Fibrosis Pulmonar , Animales , Bleomicina/toxicidad , Medicamentos Herbarios Chinos/farmacología , Etanol/toxicidad , Lotus/metabolismo , Pulmón , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
15.
J Struct Biol ; 213(3): 107774, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34329700

RESUMEN

ß-1,3-1,4-Glucanases are a type of hydrolytic enzymes capable of catalyzing the strict cleavage of ß-1,4 glycosidic bonds adjacent to ß-1,3 linkages in ß-D-glucans and have exhibited great potential in food and feed industrials. In this study, a novel glycoside hydrolase (GH) family 12 ß-1,3-1,4-glucanase (CtGlu12A) from the thermophilic fungus Chaetomium sp. CQ31 was identified and biochemically characterized. CtGlu12A was most active at pH 7.5 and 65 °C, respectively, and exhibited a high specific activity of 999.9 U mg-1 towards lichenin. It maintained more than 80% of its initial activity in a wide pH range of 5.0-11.0, and up to 60 °C after incubation at 55 °C for 60 min. Moreover, the crystal structures of CtGlu12A with gentiobiose and tetrasccharide were resolved. CtGlu12A had a ß-jellyroll fold, and performed retaining mechanism with two glutamic acids severing as the catalytic residues. In the complex structure, cellobiose molecule showed two binding modes, occupying subsites -2 to -1 and subsites + 1 to + 2, respectively. The concave cleft made mixed ß-1,3-1,4-glucan substrates maintain a bent conformation to fit into the active site. Overall, this study is not only helpful for the understanding of the substrate-binding model and catalytic mechanism of GH 12 ß-1,3-1,4-glucanases, but also provides a basis for further enzymatic engineering of ß-1,3-1,4-glucanases.


Asunto(s)
Chaetomium , Glicósido Hidrolasas , Dominio Catalítico , Chaetomium/metabolismo , Glicósido Hidrolasas/química , Hidrólisis , Especificidad por Sustrato
16.
J Biol Chem ; 293(30): 11746-11757, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29871927

RESUMEN

ß-1,4-Mannanase degrades ß-1,4-mannan polymers into manno-oligosaccharides with a low degree of polymerization. To date, only one glycoside hydrolase (GH) family 113 ß-1,4-mannanase, from Alicyclobacillus acidocaldarius (AaManA), has been structurally characterized, and no complex structure of enzyme-manno-oligosaccharides from this family has been reported. Here, crystal structures of a GH family 113 ß-1,4-mannanase from Amphibacillus xylanus (AxMan113A) and its complexes with mannobiose, mannotriose, mannopentaose, and mannahexaose were solved. AxMan113A had higher affinity for -1 and +1 mannoses, which explains why the enzyme can hydrolyze mannobiose. At least six subsites (-4 to +2) exist in the groove, but mannose units preferentially occupied subsites -4 to -1 because of steric hindrance formed by Lys-238 and Trp-239. Based on the structural information and bioinformatics, rational design was implemented to enhance hydrolysis activity. Enzyme activity of AxMan113A mutants V139C, N237W, K238A, and W239Y was improved by 93.7, 63.4, 112.9, and 36.4%, respectively, compared with the WT. In addition, previously unreported surface-binding sites were observed. Site-directed mutagenesis studies and kinetic data indicated that key residues near the surface sites play important roles in substrate binding and recognition. These first GH family 113 ß-1,4-mannanase-manno-oligosaccharide complex structures may be useful in further studying the catalytic mechanism of GH family 113 members, and provide novel insight into protein engineering of GHs to improve their hydrolysis activity.


Asunto(s)
Bacillaceae/enzimología , beta-Manosidasa/química , beta-Manosidasa/metabolismo , Secuencia de Aminoácidos , Bacillaceae/química , Bacillaceae/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Mananos/metabolismo , Modelos Moleculares , Oligosacáridos/metabolismo , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato , Trisacáridos/metabolismo
17.
Anal Bioanal Chem ; 411(15): 3341-3351, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31073729

RESUMEN

Gold nanocluster@carbon nitride quantum dot nanocomposites protected by bovine serum albumin (BSA-AuNC@CNQDs) were designed as a ratiometric fluorescence nanosensor for ultra-sensitive detection of trypsin inhibitor (TI). CNQDs were prepared via thermal treatment of carbon nitride powder. BSA-CNQDs acted as templates to synthesize BSA-AuNC@CNQDs with dual-emission peaks at 450 and 650 nm. Trypsin can catalyze the hydrolysis of BSA and decompose BSA-AuNC@CNQDs resulting in fluorescence quenching. The fluorescence quenching at 650 nm was prevented by the addition of TI to inhibit the activity of trypsin. The nanosensor-trypsin system showed a satisfactory ability toward TI detection. The ratiometric responses (the ratio of intensity at 650 to 450 nm, I650/I450) had an excellent linearity (R2 = 0.981) with logarithmic values of TI concentrations in the broad range of 1-10,000 ng/mL. The limit of detection (LOD, 0.089 ng/mL) indicates ultra-sensitive detection of TI can be achieved. Additionally, TI in soybean flour was detected by the proposed ratiometric method with satisfactory recoveries (98.15-105.52%) and less than 6% of coefficient of variation. This study reveals that BSA-AuNC@CNQDs have potential applications in detection of TI in real samples.


Asunto(s)
Glycine max/química , Oro/química , Nanopartículas del Metal/química , Nitrilos/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Inhibidores de Tripsina/análisis , Animales , Bovinos , Harina/análisis , Límite de Detección , Albúmina Sérica Bovina/química , Tripsina/química
18.
Biochim Biophys Acta Gen Subj ; 1862(6): 1376-1388, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29550433

RESUMEN

Mannan is one of the major constituent groups of hemicellulose, which is a renewable resource from higher plants. ß-Mannanases are enzymes capable of degrading lignocellulosic biomass. Here, an endo-ß-mannanase from Rhizopus microsporus (RmMan134A) was cloned and expressed. The recombinant RmMan134A showed maximal activity at pH 5.0 and 50 °C, and exhibited high specific activity towards locust bean gum (2337 U/mg). To gain insight into the substrate-binding mechanism of RmMan134A, four complex structures (RmMan134A-M3, RmMan134A-M4, RmMan134A-M5 and RmMan134A-M6) were further solved. These structures showed that there were at least seven subsites (-3 to +4) in the catalytic groove of RmMan134A. Mannose in the -1 subsite hydrogen bonded with His113 and Tyr131, revealing a unique conformation. Lys48 and Val159 formed steric hindrance, which impedes to bond with galactose branches. In addition, the various binding modes of RmMan134A-M5 indicated that subsites -2 to +2 are indispensable during the hydrolytic process. The structure of RmMan134A-M4 showed that mannotetrose only binds at subsites +1 to +4, and RmMan134A could therefore not hydrolyze mannan oligosaccharides with degree of polymerization ≤4. Through rational design, the specific activity and optimal conditions of RmMan134A were significantly improved. The purpose of this paper is to investigate the structure and function of fungal GH family 134 ß-1,4-mannanases, and substrate-binding mechanism of GH family 134 members.


Asunto(s)
Glicósidos/metabolismo , Mananos/metabolismo , Rhizopus/enzimología , beta-Manosidasa/química , beta-Manosidasa/metabolismo , Secuencia de Aminoácidos , Catálisis , Clonación Molecular , Cristalografía por Rayos X , Conformación Proteica , Homología de Secuencia , Especificidad por Sustrato
19.
Zhong Yao Cai ; 39(6): 1389-92, 2016 Jun.
Artículo en Zh | MEDLINE | ID: mdl-30156813

RESUMEN

Objective: To observe the effect of Yiqiyangyin formula on advanced lung cancer cachexia mice. Methods: 60 C57 BL /6inbred mice( SPF) were randomly divided into normal control group, model group, Yiqiyangyin formula group,indomethacin group, and cisplatin group, with 12 mice in each group. Model group and normal control group were treated with the same amount of normal saline. Except for the normal control group, the mice of the other groups were built with Lewis lung cancer model. The changes of the level of body mass, feed consumption,serum cytokine,the expression of TNF-α and its receptor were observed. Results: After eight days of treatment, compared with cisplatin group, the levels of CEA,NSE,Pro GRP in serum,CD3+,CD4+,CD4+/ CD8+levels in serum peripheral blood and TNF-R1 expressions in tumor tissues of Yiqiyangyin formula group were increased( P < 0. 05),the contents of TNF-α and IL-6 and the expressions of TNF-α and TNF-R2 in tumor tissues of Yiqiyangyin formula group were significantly decreased( P <0. 05). Conclusion: Yiqiyangyin formula affects on advanced lung cancer cachexia, which may be related to the regulation of the immune and inflammatory cytokines expression.


Asunto(s)
Caquexia , Animales , Citocinas , Indometacina , Pulmón , Neoplasias Pulmonares , Masculino , Ratones , Ratones Endogámicos C57BL
20.
FEBS J ; 291(9): 2009-2022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380733

RESUMEN

Laminaripentaose (L5)-producing ß-1,3-glucanases can preferentially cleave the triple-helix curdlan into ß-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, ß-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a ß-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/ß) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical ß-1,3-glucan. A catalytic framework (ß6-ß9-ß10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of ß-1,3-glucanases but will also provide a basis for further enzyme engineering.


Asunto(s)
Oligosacáridos , Streptomyces , beta-Glucanos , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato , beta-Glucanos/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/química , Secuencia de Aminoácidos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA