Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(18): 5064-5080.e14, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39089254

RESUMEN

So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.


Asunto(s)
Redes Reguladoras de Genes , Humanos , Lógica , Biología Sintética/métodos , Ingeniería Genética/métodos , Biología Computacional/métodos , Animales
2.
Plant Cell ; 36(10): 4372-4387, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38916914

RESUMEN

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one-fifth of the potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost, or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation-induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/crecimiento & desarrollo , Empalme Alternativo/genética , Sitios de Carácter Cuantitativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Fenotipo
3.
Nature ; 577(7791): 509-513, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747679

RESUMEN

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources1. However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge2. Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity3-5, and this has recently been explored for the reaction on copper by controlling morphology6, grain boundaries7, facets8, oxidation state9 and dopants10. Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far9), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums11, adsorbed on copper. We find that the adhered molecules improve the stabilization of an 'atop-bound' CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.

4.
J Biol Chem ; 300(6): 107395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768812

RESUMEN

B2 haplotype major histocompatibility complex (MHC) has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown, and the presenting peptide is rarely identified. Here, we identified its peptide-binding motif (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC I LC-MS/MS analysis. To further clarify the structure basis of motif, we determined the crystal structure of the BF2∗02:01-PB2552-560 complex at 1.9 Å resolution. We found that BF2∗02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2∗02:01 than BF2∗04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterward, we explored the H9N2 avian influenza virus (AIV)-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, interferon-γ, NK lysin, and poly-(ADP-ribose) polymerase in peripheral blood mononuclear cells were significantly increased in defending against H9N2 AIV infection. Especially, we selected 425 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot interferon-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.


Asunto(s)
Pollos , Epítopos de Linfocito T , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Subtipo H9N2 del Virus de la Influenza A/inmunología , Animales , Epítopos de Linfocito T/inmunología , Gripe Aviar/inmunología , Gripe Aviar/virología , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo
5.
Bioinformatics ; 40(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39240375

RESUMEN

MOTIVATION: Structural variants (SVs) play an important role in genetic research and precision medicine. As existing SV detection methods usually contain a substantial number of false positive calls, approaches to filter the detection results are needed. RESULTS: We developed a novel deep learning-based SV filtering tool, CSV-Filter, for both short and long reads. CSV-Filter uses a novel multi-level grayscale image encoding method based on CIGAR strings of the alignment results and employs image augmentation techniques to improve SV feature extraction. CSV-Filter also utilizes self-supervised learning networks for transfer as classification models, and employs mixed-precision operations to accelerate training. The experiments showed that the integration of CSV-Filter with popular SV detection tools could considerably reduce false positive SVs for short and long reads, while maintaining true positive SVs almost unchanged. Compared with DeepSVFilter, a SV filtering tool for short reads, CSV-Filter could recognize more false positive calls and support long reads as an additional feature. AVAILABILITY AND IMPLEMENTATION: https://github.com/xzyschumacher/CSV-Filter.


Asunto(s)
Aprendizaje Profundo , Humanos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Variación Estructural del Genoma
6.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38061699

RESUMEN

Abnormal processes of learning from prediction errors, i.e. the discrepancies between expectations and outcomes, are thought to underlie motivational impairments in schizophrenia. Although dopaminergic abnormalities in the mesocorticolimbic reward circuit have been found in patients with schizophrenia, the pathway through which prediction error signals are processed in schizophrenia has yet to be elucidated. To determine the neural correlates of prediction error processing in schizophrenia, we conducted a meta-analysis of whole-brain neuroimaging studies that investigated prediction error signal processing in schizophrenia patients and healthy controls. A total of 14 studies (324 schizophrenia patients and 348 healthy controls) using the reinforcement learning paradigm were included. Our meta-analysis showed that, relative to healthy controls, schizophrenia patients showed increased activity in the precentral gyrus and middle frontal gyrus and reduced activity in the mesolimbic circuit, including the striatum, thalamus, amygdala, hippocampus, anterior cingulate cortex, insula, superior temporal gyrus, and cerebellum, when processing prediction errors. We also found hyperactivity in frontal areas and hypoactivity in mesolimbic areas when encoding prediction error signals in schizophrenia patients, potentially indicating abnormal dopamine signaling of reward prediction error and suggesting failure to represent the value of alternative responses during prediction error learning and decision making.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen , Refuerzo en Psicología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Recompensa , Dopamina/metabolismo
7.
Small ; 20(11): e2305530, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926758

RESUMEN

High energy density and flexible electrodes, which have high mechanical properties and electrochemical stability, are critical to the development of wearable electronics. In this work, a free-standing MXene bonded SnS2 composited nitrogen-doped carbon fibers (MXene/SnS2 @NCFs) film is reported as a flexible anode for sodium-ion batteries. SnS2 nanoparticles with high-capacity properties are covalently decorated in bio-derived nitrogen-doped 1D carbon fibers (SnS2 @NCFs) and further assembled with highly conductive MXene sheets. The addition of bacterial cellulose (BC) can further improve the flexibility of the film. The unique 3D structure of points, lines, and planes can not only offset the disadvantage of low conductivity of SnS2 nanoparticles but also expand the distance between MXene sheets, which is conducive to the penetration of electrolytes. More importantly, the MXene sheets and N-doped 1D carbon fibers (NCFs) can accommodate the large volume expansion of SnS2 nanoparticles and trap polysulfide during the cycle. The MXene/SnS2 @NCFs film exhibits better sodium storage and excellent rate performance compared to the SnS2 @NCFs. The in situ XRD and ex situ (XRD, XPS, and HRTEM) techniques are used to analyze the sodiation process and to deeply study the reaction mechanism of the films. Finally, the quasi-solid-state full cells with MXene/SnS2 @NCFs and Na3 V2 (PO4 )3 @carbon cloth (NVP@CC) fully demonstrate the application potential of the flexible electrodes.

8.
Small ; : e2407130, 2024 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-39463059

RESUMEN

Widening the bandgaps while maintaining a strong second harmonic generation response has always been a research hotspot in the field of nonlinear optical iodate materials. A strategy involving covalent bonding is proposed that leverages the high valent later main group cation to construct iodates with predominantly covalent interactions. By using BiO(IO3) as a template, the first Sb5+-containing polar iodate, SbO(OH)2(IO3) is successfully isolated. The introduction of the two hydroxide anions led to the reduction of layered BiO(IO3) into 1D SbO(OH)2(IO3) in which two corner-sharing SbO4(OH)2 octahedra are further bridged by an iodate group. The covalently bonded [SbO(OH)2]+ chains and the optimal packing fashion of the asymmetric IO3 - groups generate a very strong second harmonic generation signal of 14 times that of KH2PO4. Furthermore, SbO(OH)2(IO3) exhibits a wide bandgap of 4.14 eV and a high laser induced damage threshold [27.9 × AgGaS2, 0.2 × KH2PO4 (10 ns, 10 Hz)].

9.
Small ; 20(11): e2306589, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37884465

RESUMEN

Partial substitution of V by other transition metals in Na3 V2 (PO4 )3 (NVP) can improve the electrochemical performance of NVP as a cathode for sodium-ion batteries (SIBs). Herein, phosphate Na-V-Mn-Ni-containing composites based on NASICON (Natrium Super Ionic Conductor)-type structure have been fabricated by sol-gel method. The synchrotron-based X-ray study, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) studies show that manganese/nickel combinations successfully substitute the vanadium in its site within certain limits. Among the received samples, composite based on Na3.83 V1.17 Mn0.58 Ni0.25 (PO4 )3 (VMN-0.5, 108.1 mAh g-1 at 0.2 C) shows the highest electrochemical ability. The cyclic voltammetry, galvanostatic intermittent titration technique, in situ XRD, ex situ XPS, and bond valence site energy calculations exhibit the kinetic properties and the sodium storage mechanism of VMN-0.5. Moreover, VMN-0.5 electrode also exhibits excellent electrochemical performance in quasi-solid-state sodium metal batteries with PVDF-HFP quasi-solid electrolyte membranes. The presented work analyzes the advantages of VMN-0.5 and the nature of the substituted metal in relation to the electrochemical properties of the NASICON-type structure, which will facilitate further commercialization of SIBs.

10.
IUBMB Life ; 76(7): 420-436, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38126920

RESUMEN

Combination therapy with anti-HER2 agents and immunotherapy has demonstrated significant clinical benefits in gastric cancer (GC), but the underlying mechanism remains unclear. In this study, we used multiplex immunohistochemistry to assess the changes of the tumor microenvironment in 47 advanced GC patients receiving anti-HER2 therapy. Additionally, we performed single-cell transcriptional sequencing to investigate potential cell-to-cell communication and molecular mechanisms in four HER2-positive GC baseline samples. We observed that post-treated the infiltration of NK cells, CD8+ T cells, and B lymphocytes were significantly higher in patients who benefited from anti-HER2 treatment than baseline. Further spatial distribution analysis demonstrated that the interaction scores between NK cells and CD8+ T cells, B lymphocytes and M2 macrophages, B lymphocytes and Tregs were also significantly higher in benefited patients. Cell-cell communication analysis from scRNA sequencing showed that NK cells utilized CCL3/CCL4-CCR5 to recruit CD8+ T cell infiltration. B lymphocytes employed CD74-APP/COPA/MIF to interact with M2 macrophages, and utilized TNF-FAS/ICOS/TNFRSR1B to interact with Tregs. These cell-cell interactions contribute to inhibit the immune resistance of M2 macrophages and Tregs. Our research provides potential guidance for the use of anti-HER2 therapy in combination with immune therapy.


Asunto(s)
Receptor ErbB-2 , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Femenino , Masculino , Persona de Mediana Edad , Células Asesinas Naturales/inmunología , Linfocitos T CD8-positivos/inmunología , Anciano , Linfocitos B/inmunología , Comunicación Celular/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Inmunoterapia , Adulto
11.
Microb Pathog ; 195: 106872, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173852

RESUMEN

Membrane lipoproteins serve as primary pro-inflammatory virulence factors in Mycoplasma genitalium. Membrane lipoproteins primarily induce inflammatory responses by activating Toll-like Receptor 2 (TLR2); however, the role of the metabolic status of urethral epithelial cells in inflammatory response remains unclear. In this study, we found that treatment of uroepithelial cell lines with M. genitalium membrane lipoprotein induced metabolic reprogramming, characterized by increased aerobic glycolysis, decreased oxidative phosphorylation, and increased production of the metabolic intermediates acetyl-CoA and malonyl-CoA. The metabolic shift induced by membrane lipoproteins is reversible upon blocking MyD88 and TRAM. Malonyl-CoA induces malonylation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and malonylated GAPDH could dissociate from the 3' untranslated region of TNF-α and IFN-γ mRNA. This dissociation greatly reduces the inhibitory effect on the translation of TNF-α and IFN-γ mRNA, thus achieving fine-tuning control over cytokine secretion. These findings suggest that GAPDH malonylation following M. genitalium infection is an important inflammatory signal that plays a crucial role in urogenital inflammatory diseases.


Asunto(s)
Citocinas , Células Epiteliales , Interferón gamma , Mycoplasma genitalium , Factor de Necrosis Tumoral alfa , Mycoplasma genitalium/metabolismo , Mycoplasma genitalium/genética , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interferón gamma/metabolismo , Línea Celular , Lipoproteínas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Uretra/microbiología , Uretra/metabolismo , Infecciones por Mycoplasma/metabolismo , Infecciones por Mycoplasma/microbiología , Factores de Virulencia/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Glucólisis , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética
12.
Opt Lett ; 49(2): 375-378, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194572

RESUMEN

Nonlinear photonic crystals (NPCs) are microstructures characterized by a spatially modulated second-order nonlinear coefficient that have been extensively used for the generation and beam-shaping of coherent light at new frequencies. NPCs for asymmetric optical transmission have a significant impact on novel and multifunction photonic devices. However, nonreciprocal NPCs capable of completely independent asymmetric holographic imaging for the opposite propagation directions have not been reported. Here, we propose a holographic combiner for a different independent image generation at the second-harmonic (SH) wavelength when illuminated from opposite sides of NPCs. The design of the holographic combiner is based on a 3D nonlinear detour phase holography and an orbital angular momentum (OAM) multiplexing nonlinear holography. This work achieves completely independent asymmetric holographic imaging at the SH frequency by using NPCs, which may have potential applications in classical and quantum optical devices.

13.
BMC Cancer ; 24(1): 173, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317080

RESUMEN

Copy-number alterations (CNAs) are a hallmark of cancer and can regulate cancer cell states via altered gene expression values. Herein, we have developed a copy-number impact (CNI) analysis method that quantifies the degree to which a gene expression value is impacted by CNAs and leveraged this analysis at the pathway level. Our results show that a high CNA is not necessarily reflected at the gene expression level, and our method is capable of detecting genes and pathways whose activity is strongly influenced by CNAs. Furthermore, the CNI analysis enables unbiased categorization of CNA categories, such as deletions and amplifications. We identified six CNI-driven pathways associated with poor treatment response in ovarian high-grade serous carcinoma (HGSC), which we found to be the most CNA-driven cancer across 14 cancer types. The key driver in most of these pathways was amplified wild-type KRAS, which we validated functionally using CRISPR modulation. Our results suggest that wild-type KRAS amplification is a driver of chemotherapy resistance in HGSC and may serve as a potential treatment target.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Genoma , Variaciones en el Número de Copia de ADN , Carcinoma/genética , Expresión Génica
14.
Langmuir ; 40(18): 9761-9774, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663878

RESUMEN

Stimuli-responsive behaviors and controlled release in liposomes are pivotal in nanomedicine. To this end, we present an approach using a photoresponsive azobenzene nanocluster (AzDmpNC), prepared from azobenzene compounds through melting and aggregation. When integrated with liposomes, they form photoresponsive vesicles. The morphology and association with liposomes were investigated by using transmission electron microscopy. Liposomes loaded with calcein exhibited a 9.58% increased release after UV exposure. To gain insights into the underlying processes and elucidate the mechanisms involved. The molecular dynamic simulations based on the reactive force field and all-atom force field were employed to analyze the aggregation of isomers into nanoclusters and their impacts on phospholipid membranes, respectively. The results indicate that the nanoclusters primarily aggregate through π-π and T-stacking forces. The force density inside the cis-isomer of AzDmpNC formed after photoisomerization is lower, leading to its easier dispersion, rapid diffusion, and penetration into the membrane, disrupting the densification.


Asunto(s)
Compuestos Azo , Liposomas , Simulación de Dinámica Molecular , Compuestos Azo/química , Compuestos Azo/efectos de la radiación , Liposomas/química , Nanopartículas/química , Rayos Ultravioleta , Fluoresceínas/química , Procesos Fotoquímicos
15.
Gynecol Oncol ; 180: 91-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061276

RESUMEN

OBJECTIVES: We evaluated usability of single base substitution signature 3 (Sig3) as a biomarker for homologous recombination deficiency (HRD) in tubo-ovarian high-grade serous carcinoma (HGSC). MATERIALS AND METHODS: This prospective observational trial includes 165 patients with advanced HGSC. Fresh tissue samples (n = 456) from multiple intra-abdominal areas at diagnosis and after neoadjuvant chemotherapy (NACT) were collected for whole-genome sequencing. Sig3 was assessed by fitting samples independently with COSMIC v3.2 reference signatures. An HR scar assay was applied for comparison. Progression-free survival (PFS) and overall survival (OS) were studied using Kaplan-Meier and Cox regression analysis. RESULTS: Sig3 has a bimodal distribution, eliminating the need for an arbitrary cutoff typical in HR scar tests. Sig3 could be assessed from samples with low (10%) cancer cell proportion and was consistent between multiple samples and stable during NACT. At diagnosis, 74 (45%) patients were HRD (Sig3+), while 91 (55%) were HR proficient (HRP, Sig3-). Sig3+ patients had longer PFS and OS than Sig3- patients (22 vs. 13 months and 51 vs. 34 months respectively, both p < 0.001). Sig3 successfully distinguished the poor prognostic HRP group among BRCAwt patients (PFS 19 months for Sig3+ and 13 months for Sig3- patients, p < 0.001). However, Sig3 at diagnosis did not predict chemoresponse anymore in the first relapse. The patient-level concordance between Sig3 and HR scar assay was 87%, and patients with HRD according to both tests had the longest median PFS. CONCLUSIONS: Sig3 is a prognostic marker in advanced HGSC and useful tool in patient stratification for HRD.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Cicatriz/patología , Cistadenocarcinoma Seroso/patología , Neoplasias Ováricas/patología , Pronóstico , Supervivencia sin Progresión
16.
Fish Shellfish Immunol ; 153: 109861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216711

RESUMEN

This study explored the key molecules and signal pathways in the pathogenesis of grass carp reovirus (GCRV). Using immunoprecipitation mass spectrometry and Co-IP validation, the protein CiANXA4 was identified which interacts indirectly with CiLGP2. CiANXA4 encodes 321 amino acids, including 4 ANX domains. To explore the role of CiANXA4 in the anti-GCRV immune response, we used overexpression and siRNA knockdown in cells. The results showed that overexpression of the CiANXA4 gene significantly increased the mRNA content of vp2 and vp7 in GCRV-infected cells, and the virus titer greatly increased. Knockdown of CiANXA4 significantly inhibited the mRNA levels of vp2 and vp7, and the protein levels of viral protein VP7 also significantly decreased. This suggests that CiANXA4 promotes viral proliferation. Further, we demonstrate that the ANX3 and ANX4 domains are key domains that limit CiANXA4 function by constructing domain-deletion mutants. Finally, we investigated the relationship between CiLGP2 and CiANXA4. RT-PCR and Western blot results showed that CiLGP2 mRNA and protein expression levels were not affected by CiANXA4 overexpression. In contrast, overexpression of CiLGP2 resulted in significant reductions in CiANXA4 mRNA and protein levels. This suggests that the function of CiANXA4 is restricted by CiLGP2, and CiANXA4 is a downstream molecule of CiLGP2. These results reveal that CiANXA4 plays a critical role in the anti-GCRV innate immune response of grass carp, and provides new targets and strategies to develop antiviral drugs and improve disease resistance in grass carp.


Asunto(s)
Carpas , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Infecciones por Reoviridae , Reoviridae , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Carpas/genética , Carpas/inmunología , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Reoviridae/fisiología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Replicación Viral
17.
BMC Neurol ; 24(1): 202, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877400

RESUMEN

BACKGROUND: Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS: Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS: 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS: Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Masculino , Femenino , Glioma/complicaciones , Glioma/genética , Glioma/cirugía , Glioma/patología , Persona de Mediana Edad , Estudios Retrospectivos , Pronóstico , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Anciano , Estudios de Cohortes , Adulto Joven
18.
Gastric Cancer ; 27(3): 519-538, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460015

RESUMEN

BACKGROUND: Gastric cancer with peritoneal metastasis (PM-GC), recognized as one of the deadliest cancers. However, whether and how the tumor cell-extrinsic tumor microenvironment (TME) is involved in the therapeutic failure remains unknown. Thus, this study systematically assessed the immunosuppressive tumor microenvironment in ascites from patients with PM-GC, and its contribution to dissemination and immune evasion of ascites-disseminated tumor cells (aDTCs). METHODS: Sixty-three ascites and 43 peripheral blood (PB) samples from 51 patients with PM-GC were included in this study. aDTCs in ascites and circulating tumor cells (CTCs) in paired PB were immunophenotypically profiled. Using single-cell RNA transcriptional sequencing (scRNA-seq), crosstalk between aDTCs and the TME features of ascites was inspected. Further studies on the mechanism underlying aDTCs-immune cells crosstalk were performed on in vitro cultured aDTCs. RESULTS: Immune cells in ascites interact with aDTCs, prompting their immune evasion. Specifically, we found that the tumor-associated macrophages (TAMs) in ascites underwent a continuum lineage transition from cathepsinhigh (CTShigh) to complement 1qhigh (C1Qhigh) TAM. CTShigh TAM initially attracted the metastatic tumor cells to ascites, thereafter, transitioning terminally to C1Qhigh TAM to trigger overproliferation and immune escape of aDTCs. Mechanistically, we demonstrated that C1Qhigh TAMs significantly enhanced the expression of PD-L1 and NECTIN2 on aDTCs, which was driven by the activation of the C1q-mediated complement pathway. CONCLUSIONS: For the first time, we identified an immunosuppressive macrophage transition from CTShigh to C1Qhigh TAM in ascites from patients with PM-GC. This may contribute to developing potential TAM-targeted immunotherapies for PM-GC.


Asunto(s)
Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Ascitis , Neoplasias Peritoneales/secundario , Complemento C1q , Evasión Inmune , Microambiente Tumoral
19.
J Immunol ; 208(5): 1189-1203, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101889

RESUMEN

The small HERC family currently comprises four members (HERC3-6) involved in the regulation of various physiological activities. Little is known about the role of HERCs in IFN response. In this study, we identify a novel fish HERC member, named crucian carp HERC7, as a negative regulator of fish IFN response. Genome-wide search of homologs and comprehensive phylogenetic analyses reveal that the small HERC family, apart from HERC3-6 that have been well-characterized in mammals, contains a novel HERC7 subfamily exclusively in nonmammalian vertebrates. Lineage-specific and even species-specific expansion of HERC7 subfamily in fish indicates that crucian carp HERC7 might be species-specific. In virally infected fish cells, HERC7 is induced by IFN and selectively targets three retinoic acid-inducible gene-I-like receptor signaling factors for degradation to attenuate IFN response by two distinct strategies. Mechanistically, HERC7 delivers mediator of IFN regulatory factor 3 activator and mitochondrial antiviral signaling protein for proteasome-dependent degradation at the protein level and facilitates IFN regulatory factor 7 transcript decay at the mRNA level, thus abrogating cellular IFN induction to promote virus replication. Whereas HERC7 is a putative E3 ligase, the E3 ligase activity is not required for its negative regulatory function. These results demonstrate that the ongoing expansion of the small HERC family generates a novel HERC7 to fine-tune fish IFN antiviral response.


Asunto(s)
Factor 7 Regulador del Interferón/metabolismo , Interferones/inmunología , Reoviridae/inmunología , Rhabdoviridae/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carpas , Línea Celular , Proteínas de Peces/genética , Células HEK293 , Humanos , Factor 7 Regulador del Interferón/genética , Proteínas de la Membrana/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética , Transducción de Señal/inmunología , Transactivadores/genética
20.
J Immunol ; 209(7): 1335-1347, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165180

RESUMEN

Tripartite motif (TRIM) family proteins have come forth as important modulators of innate signaling dependent on of E3 ligase activity. Recently, several human TRIM proteins have been identified as unorthodox RNA-binding proteins by RNA interactome analyses; however, their targets and functions remain largely unknown. FTRCA1 is a crucian carp (Carassius auratus)-specific finTRIM (fish novel TRIM) member and negatively regulates the IFN antiviral response by targeting two retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) pathway molecules, that is, TANK-binding kinase 1 (TBK1) and IFN regulatory factor 7 (IRF7). In this study, we identify FTRCA1 as an RNA-binding E3 ligase and characterize the contribution of its RNA-binding activity and E3 ligase activity to fish IFN response. Besides targeting TBK1 and IRF7, FTRCA1 downregulates fish IFN response also by targeting stimulator of IFN response cGAMP interactor 1 (STING1). E3 ligase activity is required for full inhibition on the TBK1- and IRF7-mediated IFN response, but partial inhibition on the STING1-mediated IFN response. However, FTRCA1 has a general binding potential to mRNAs in vitro, it selectively binds STING1 and IRF7 mRNAs in vivo to attenuate mRNA levels, and it directly interacts with TBK1 protein to target protein degradation for downregulating the IFN response. Our results present an interesting example of a fish species-specific finTRIM protein that has acquired RNA-binding activity and E3 ligase activity to fine-tune fish IFN response.


Asunto(s)
Factor VII , ARN , Animales , Antivirales , Proteínas de Peces/genética , Humanos , Inmunidad Innata , ARN Mensajero , Tretinoina , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA