Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(5): 3147-3159, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38279915

RESUMEN

Interlocked molecular assemblies constitute a captivating ensemble of chemical topologies, comprising two or more separate components that exhibit remarkably intricate structures. The interlocked molecular assemblies are typically identical, and heterointerlocked systems that comprise structurally distinct assemblies remain unexplored. Here, we demonstrate that metal-templated synthesis can be exploited to afford not only a homointerlocked cage but also a heterointerlocked cage. Treatment of a carboxylated 2,9-dimethyl-1,10-phenanthroline (dmp) or Cu(I) bis-dmp linker with a Ni4-p-tert-butylsulfonylcalix[4]arene cluster affords noninterlocked octahedron and quadruply interlocked double cages consisting of two identical tetragonal pyramids, respectively. In contrast, when a mixture of dmp and Cu(I) bis-dmp linkers is used, a quadruply heterointerlocked cage is produced, consisting of a tetragonal pyramid and an octahedron. With photoredox-active [Cu(dmp)2]+ in the structures, both interlocked cages exhibit remarkable performance as photocatalysts for atom transfer radical addition (ATRA) reactions of trifluoromethanesulfonyl chloride with alkenes or oxo-azidations of vinyl arenes. These interlocked structures serve the dual purpose of stabilizing photocatalytically active components against deactivation and encapsulating substrates within the cavity, resulting in yields comparable to or even surpassing those of their molecular counterparts. This work thus provides a new strategy that combines metal templating and nontemplating approaches to design new types of interlocked assemblies with intriguing architectures and properties.

2.
Nat Commun ; 15(1): 7044, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147797

RESUMEN

Microflow catalysis is a cutting-edge approach to advancing chemical synthesis and manufacturing, but the challenge lies in developing efficient and stable multiphase catalysts. Here we showcase incorporating amine-containing metal-organic cages into automated microfluidic reactors through covalent bonds, enabling highly continuous flow catalysis. Two Fe4L4 tetrahedral cages bearing four uncoordinated amines were designed and synthesized. Post-synthetic modifications of the amine groups with 3-isocyanatopropyltriethoxysilane, introducing silane chains immobilized on the inner walls of the microfluidic reactor. The immobilized cages prove highly efficient for the reaction of anthranilamide with aldehydes, showing superior reactivity and recyclability relative to free cages. This superiority arises from the large cavity, facilitating substrate accommodation and conversion, a high mass transfer rate and stable covalent bonds between cage and microreactor. This study exemplifies the synergy of cages with microreactor technology, highlighting the benefits of heterogenous cages and the potential for future automated synthesis processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA