RESUMEN
Grass carp reovirus (GCRV) is the most virulent pathogen in the genus Aquareovirus, belonging to the family Spinareoviridae. Members of the Spinareoviridae family are known to replicate and assemble in cytoplasmic inclusion bodies termed viroplasms; however, the detailed mechanism underlying GCRV viroplasm formation and its specific roles in virus infection remains largely unknown. Here, we demonstrate that GCRV viroplasms form through liquid-liquid phase separation (LLPS) of the nonstructural protein NS80 and elucidate the specific role of LLPS during reovirus infection and immune evasion. We observe that viroplasms coalesce within the cytoplasm of GCRV-infected cells. Immunofluorescence and transmission electron microscopy indicate that GCRV viroplasms are membraneless structures. Live-cell imaging and fluorescence recovery after photobleaching assay reveal that GCRV viroplasms exhibit liquid-like properties and are highly dynamic structures undergoing fusion and fission. Furthermore, by using a reagent to inhibit the LLPS process and constructing an NS80 mutant defective in LLPS, we confirm that the liquid-like properties of viroplasms are essential for recruiting viral dsRNA, viral RdRp, and viral proteins to participate in viral genome replication and virion assembly, as well as for sequestering host antiviral factors for immune evasion. Collectively, our findings provide detailed insights into reovirus viroplasm formation and reveal the specific functions of LLPS during virus infection and immune evasion, identifying potential targets for the prevention and control of this virus. IMPORTANCE: Grass carp reovirus (GCRV) poses a significant threat to the aquaculture industry, particularly in China, where grass carp is a vital commercial fish species. However, detailed information regarding how GCRV viroplasms form and their specific roles in GCRV infection remains largely unknown. We discovered that GCRV viroplasms exhibit liquid-like properties and are formed through a physico-chemical biological phenomenon known as liquid-liquid phase separation (LLPS), primarily driven by the nonstructural protein NS80. Furthermore, we confirmed that the liquid-like properties of viroplasms are essential for virus replication, assembly, and immune evasion. Our study not only contributes to a deeper understanding of GCRV infection but also sheds light on broader aspects of viroplasm biology. Given that viroplasms are a universal feature of reovirus infection, inhibiting LLPS and then blocking viroplasms formation may serve as a potential pan-reovirus inhibition strategy.
Asunto(s)
Carpas , Evasión Inmune , Infecciones por Reoviridae , Reoviridae , Proteínas no Estructurales Virales , Replicación Viral , Reoviridae/genética , Reoviridae/fisiología , Animales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Carpas/virología , Infecciones por Reoviridae/virología , Cuerpos de Inclusión Viral/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Citoplasma/virología , Citoplasma/metabolismo , Genoma Viral , Línea Celular , ARN Viral/genética , Separación de FasesRESUMEN
Peroxiredoxins (Prxs) are a family of antioxidant enzymes crucial for shielding cells against oxidative damage from reactive oxygen species (ROS). In this study, we cloned and analyzed two grass carp peroxiredoxin genes, CiPrx5 and CiPrx6. These genes exhibited ubiquitous expression across all sampled tissues, with their expression levels significantly modulated upon exposure to grass carp reovirus (GCRV). CiPrx5 was localized in the mitochondria, while CiPrx6 was uniformly distributed in the whole cells. Transfection or transformation of CiPrx5 and CiPrx6 into fish cells or E. coli significantly enhanced host resistance to H2O2 and heavy metals, leading to increased cell viability and reduced cell apoptosis rates. Furthermore, purified recombinant CiPrx5 and CiPrx6 proteins effectively protected DNA against oxidative damage. Notably, overexpression of both peroxiredoxins in fish cells effectively inhibited GCRV replication, reduced intracellular ROS levels induced by GCRV infection and H2O2 treatment, and induced autophagy. Significantly, these functions of CiPrx5 and CiPrx6 in GCRV replication and ROS mitigation were abolished upon treatment with an autophagy inhibitor. In summation, our findings suggest that grass carp Prx5 and Prx6 promote autophagy to inhibit GCRV replication, decrease intracellular ROS, and provide protection against oxidative stress.
Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Animales , Carpas/genética , Carpas/metabolismo , Especies Reactivas de Oxígeno , Peroxirredoxinas/genética , Escherichia coli , Peróxido de Hidrógeno , Infecciones por Reoviridae/prevención & control , Estrés Oxidativo , Autofagia , Enfermedades de los Peces/prevención & controlRESUMEN
The construction of exceptionally multifunctional electrocatalysts is essential for various applications, but it poses significant challenges. A novel electrocatalyst, denoted as Ru/N, S-MoO2/CNTs, was successfully synthesized using a combination of mechano-grinding and hydrothermal/calcination techniques. The Ru/N, S-MoO2/CNTs demonstrates ultrasmall overpotentials of 12 and 163 mV in NF, 51 and 167 mV in GCE, and 54 and 173 mV in CC for HER and OER, respectively, at a current density of 10 mA/cm2 in alkaline medium. To accomplish electrocatalytic OWS, a current density of 10 mA/cm2 can be obtained by using a cell voltage of 1.446 V. Theoretical studies demonstrated that the inclusion of Ru, N, and S triggers a change in the composition of MoO2; produces oxygen vacancies; and forms Ru, N, and S-oxygen-Mo catalytic centers. The combination of Ru, N, and S nanoclusters; Ru, N, and S-oxygen-Mo catalytic centers; and OVs-enriched MoO2 would position it among the top electrocatalysts.
RESUMEN
BACKGROUND/OBJECTIVE: With the development of society, pulmonary fungal diseases, represented by pulmonary aspergillosis and pulmonary cryptococcosis, have become increasingly common. However, there is a lack of clear understanding regarding coinfection by these two types of fungi in immunocompetent individuals. METHODS: A retrospective study from 2014 to 2022 and a systematic literature review of original articles published in English were performed. Patients with pulmonary cryptococcosis complicated with pulmonary aspergillosis including 5 in the retrospective study and 6 in the systematic literature review. RESULT: The diagnosis of concurrent pulmonary cryptococcosis and pulmonary aspergillosis in patients was confirmed through repeated biopsies or surgical resection. Pulmonary cryptococcosis is often diagnosed initially (6/11, 55%), while the diagnosis of pulmonary aspergillosis is established when the lesions become fixed or enlarged during treatment. Transbronchial lung biopsy (3/11, 27%), thoracoscopic lung biopsy (2/11, 18%), and percutaneous aspiration biopsy of the lung (1/11, 9%) were the main methods to confirm concurrent infection. Most patients were treated with voriconazole, resulting in a cure for the coinfection (6/11, 55%). CONCLUSION: Pulmonary cryptococcosis complicated with pulmonary Aspergillus is an easily neglected mixed fungal infection. During the treatment of lesion enlargement in clinical cryptococcus, we need to watch out for Aspergillus infection.
Asunto(s)
Aspergilosis , Coinfección , Criptococosis , Aspergilosis Pulmonar , Humanos , Coinfección/complicaciones , Estudios Retrospectivos , Aspergilosis Pulmonar/complicaciones , Aspergilosis Pulmonar/diagnóstico , Criptococosis/complicaciones , Criptococosis/diagnóstico , Criptococosis/tratamiento farmacológico , Aspergilosis/diagnósticoRESUMEN
PURPOSE: This study aimed to compare variations between the earlobe and fingertip sampling sites in exercises dominated by upper body muscle exertion. It also sought to investigate capillary blood lactate differences between Lactate Scout 4 (LS4) and a bench-top analyzer (Biosen S-Line analyzer, BSL) during Double Poling. METHODS: Blood samples were collected from the earlobe and fingertip immediately before exercise, at the end of each of five stages, and at 1-, 3-, 5-, and 7-min post-exercise. Forty healthy university students participated as volunteers. During the study, they performed double poling on a ski ergometer with progressively increasing load. Lactate levels were measured using both the BSL and LS4 analyzers. RESULTS: Fingertip Bla values were significantly higher than earlobe values, with a mean bias of -0.66 mmol/L, reaching -0.86 mmol/L in the 4-8 mmol/L range. At the earlobe, the highest CCC between BSL and LS4-a was 0.84 (> 8 mmol/L), and for BSL and LS4-b, it was 0.85 (> 8 mmol/L). At the fingertip, the highest CCC between BSL and LS4-c was 0.68 (> 8 mmol/L), and for BSL and LS4-d, it was 0.52 (> 8 mmol/L). Comparing LS4-a and LS4-b at the earlobe, the highest CCC was 0.83 (0-4 mmol/L). At the fingertip, comparing LS4-c and LS4-d, the highest CCC was 0.68 (> 8 mmol/L). CONCLUSIONS: Blood lactate concentrations are higher at the fingertip than the earlobe during SkiErg double poling. The LS4 is less reliable, especially at the fingertip, so using the earlobe with the BSL analyzer is recommended for accurate measurements.
RESUMEN
Objective: The aims of this study were to examine the effect of SARS-CoV-2 infection on cardiorespiratory fitness (CRF) and time-trial performance in vaccinated well-trained young kayak athletes. Methods: This is a longitudinal observational study. Sixteen (7 male, 9 female) vaccinated kayakers underwent body composition assessment, maximal graded exercise test, and 1000-m time-trial tests 21.9 ± 1.7 days before and 66.0 ± 2.2 days after the SARS-CoV-2 infection. The perception of training load was quantified with Borg's CR-10 scale before and after the infection return to sport period. Results: There were significant decreases in peak oxygen uptake (-9.7 %; effect size [ES] = 1.38), peak oxygen pulse (-5.7 %; ES = 0.96), and peak heart rate (-1.9 %; ES = 0.61). Peak minute ventilation, and minute ventilation/carbon dioxide production slope were unchanged after infection compared to the pre-infection values. In the entire 1000-m, the impaired tendencies were found in completion time, mean power, and mean speed (-2.4 to 1.2 %; small ESs = -0.40 to 0.47) as well as significant changes in stroke rate and stroke length (-4.5 to 3.7 %; ESs = -0.60 to 0.73). Conclusion: SARS-CoV-2 infection decreased CRF and time-trial performance even two months after return to regular training in vaccinated athletes.
RESUMEN
Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool. With tailored affinity, APQQ flexibly accesses, site-specifically binds, and forms a complex with CD81, enabling in-situ tracking of the dynamics and activity of this protein in living cells, which has rarely been explored because of the lack of ligands. Furthermore, APQQ triggers the relocalization of CD81 from diffuse to densely clustered at cell junctions and modulates the interplay of membrane proteins at cellular interfaces. Motivated by these, efficient suppression of cancer cell migration, and inhibition of breast cancer metastasis were achieved in vivo.
Asunto(s)
Péptidos , Tetraspanina 28 , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Tetraspanina 28/metabolismo , Tetraspanina 28/química , Metástasis de la Neoplasia , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismoRESUMEN
To determine how lateral shuffling/lateral shuffle (LS) -induced fatigue affects ankle proprioception and countermovement jump (CMJ) performance. Eighteen male college athletes performed 6 modes of a repeated LS protocol with 2 distances (2.5 and 5 m) and 3 speeds (1.6, 1.8, and 2.0 m/s). After LS, ankle inversion proprioception (AIP) was measured using the active movement extent discrimination apparatus (AMEDA). CMJ, blood lactate (BLa), heart rate (HR) and rating of perceived exertion (RPE) were measured before and after LS. The number of changes of direction (CODs) in each protocol was recorded. LS-induced fatigue was evident in BLa, HR and RPE (all p < 0.05), increasing with shorter shuffle distance and faster speed. RM-ANOVA showed a significant distance main effect on both AIP (p < 0.01) and CMJ (p < 0.05), but the speed main effect was only significant for CMJ (p ≤ 0.001), not AIP (p = 0.87). CMJ performance was correlated with BLa, HR and RPE (r values range from -0.62 to -0.32, all p ≤ 0.001). AIP was only correlated with CODs (r = -0.251, p < 0.01). These results suggested that in LS, shorter distance, regardless of speed, was associated with worse AIP, whereas subsequent CMJ performance was affected by both LS distance and speed. Hence, AIP performance was not related to physiological fatigue, but CMJ performance was. Results imply that LS affects processing proprioceptive input and producing muscular output differently, and that these two aspects of neuromuscular control are affected by physiological fatigue to varying degrees. These findings have implications for injury prevention and performance enhancement.
Asunto(s)
Tobillo , Rendimiento Atlético , Frecuencia Cardíaca , Ácido Láctico , Fatiga Muscular , Propiocepción , Humanos , Masculino , Propiocepción/fisiología , Adulto Joven , Frecuencia Cardíaca/fisiología , Fatiga Muscular/fisiología , Tobillo/fisiología , Rendimiento Atlético/fisiología , Ácido Láctico/sangre , Ejercicio Pliométrico , Esfuerzo Físico/fisiologíaRESUMEN
OBJECTIVE: Gut microbiota dysbiosis is closely linked to the pathogenesis of rheumatoid arthritis (RA). We aimed to identify potential probiotic gut microbes that can ameliorate the development of RA. DESIGN: Microbiota profiling in patients with RA and healthy individuals was investigated via 16S rDNA bacterial gene sequencing and shotgun metagenomics. Collagen-induced arthritic mice and TNF-α transgenic mice were used to evaluate the roles of the gut commensal Parabacteroides distasonis in RA. The effects of P. distasonis-derived microbial metabolites on the differentiation of CD4+ T cells and macrophage polarisation were also investigated. RESULTS: The relative abundance of P. distasonis in new-onset patients with RA and patients with RA with history of the disease was downregulated and this decrease was negatively correlated with Disease Activity Score-28 (DAS28). Oral treatment of arthritic mice with live P. distasonis (LPD) considerably ameliorated RA pathogenesis. LPD-derived lithocholic acid (LCA), deoxycholic acid (DCA), isolithocholic acid (isoLCA) and 3-oxolithocholic acid (3-oxoLCA) had similar and synergistic effects on the treatment of RA. In addition to directly inhibiting the differentiation of Th17 cells, 3-oxoLCA and isoLCA were identified as TGR5 agonists that promoted the M2 polarisation of macrophages. A specific synthetic inhibitor of bile salt hydrolase attenuated the antiarthritic effects of LPD by reducing the production of these four bile acids. The natural product ginsenoside Rg2 exhibited its anti-RA effects by promoting the growth of P. distasonis. CONCLUSIONS: P. distasonis and ginsenoside Rg2 might represent probiotic and prebiotic agents in the treatment of RA.
Asunto(s)
Artritis Reumatoide , Ratones , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Bacteroidetes , BacteriasRESUMEN
OBJECTIVE: This research aimed to elucidate the molecular mechanisms underlying the periodontitis-associated bone loss, with particular emphasis on the contributory role of hypoxic microenvironment in this process. BACKGROUND: Periodontitis generally causes alveolar bone loss and is often associated with a hypoxic microenvironment, which affects bone homeostasis. However, the regulating mechanism between hypoxia and jaw metabolism remains unclear. Hypoxia triggers autophagy, which is closely related to osteogenic differentiation, but how hypoxia-induced autophagy regulates bone metabolism is unknown. HDAC6 and FOXO1 are closely related to bone metabolism and autophagy, respectively, but whether they are related to hypoxia-induced bone loss and their internal mechanisms is still unclear. METHODS: Established rat nasal obstruction model and hypoxia cell model. Immunohistochemistry was performed to detect the expression and localization of HDAC6 and FOXO1 proteins, analysis of autophagic flux and transmission electron microscopy was used to examine the autophagy level and observe the autophagosomes, co-immunoprecipitation and chromatin immunoprecipitation were preformed to investigate the interaction of HDAC6 and FOXO1. RESULTS: Hypoxia causes increased autophagy and reduced osteogenic differentiation in rat mandibles and BMSCs, and blocking autophagy can attenuate hypoxia-induced osteogenic differentiation decrease. Moreover, hypoxia dissociated the FOXO1-HDAC6 complex and accumulated them in the nucleus. Knocking down of FOXO1 or HDAC6 alleviated hypoxia-induced autophagy elevation or osteogenic differentiation reduction by binding to related genes, respectively. CONCLUSION: Hypoxia causes mandibular bone loss and autophagy elevation. Mechanically, hypoxia dissociates the FOXO1-HDAC6 complex and aggregates them in the nucleus, whereas HDAC6 decreases osteogenic differentiation and FOXO1 enhances autophagy to inhibit osteogenic differentiation.
Asunto(s)
Osteogénesis , Periodontitis , Ratas , Animales , Osteogénesis/fisiología , Diferenciación Celular/fisiología , Hipoxia , Autofagia , Células Cultivadas , Histona Desacetilasa 6RESUMEN
Peptide-derived metal-organic frameworks (PMOFs) have emerged as a class of biomimetic materials with attractive performances in analytical and bioanalytical chemistry. The incorporation of biomolecule peptides gives the frameworks conformational flexibility, guest adaptability, built-in chirality, and molecular recognition ability, which greatly accelerate the applications of PMOFs in enantiomeric separation, affinity separation, and the enrichment of bioactive species from complicated samples. This review focuses on the recent advances in the engineering and applications of PMOFs in selective separation. The unique biomimetic size-, enantio-, and affinity-selective performances for separation are discussed along with the chemical structures and functions of MOFs and peptides. Updates of the applications of PMOFs in adaptive separation of small molecules, chiral separation of drug molecules, and affinity isolation of bioactive species are summarized. Finally, the promising future and remaining challenges of PMOFs for selective separation of complex biosamples are discussed.
Asunto(s)
Biomimética , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , EstereoisomerismoRESUMEN
BACKGROUND: Oral breathing has an important impact on morphology and bone mineral density (BMD) in a mandible. This study aimed to investigate the hub genes and mechanism regulating the mandibular BMD decrease induced by nasal obstruction. METHODS: A unilateral nasal obstruction model was established in 1-week-old Wistar rats by electrocautery obstruction. BMD of the mandible was determined by micro-computed tomography. Transcriptome analysis was performed to identify differentially expressed genes (DEGs). Hub genes were identified by building protein-protein interaction network and verified by western blot. A hypoxic cell model was established in bone marrow mesenchymal stem cells (BMSCs) by using CoCl2. The expression of hypoxia-inducible factor-1α (HIF-1α), NF-kB ligand-receptor activator (RANKL), osteoprotegerin (OPG), and Cyp1a1 was detected by western blot. RESULTS: The mandibular BMD of rats in the unilateral nasal obstruction group was significantly decreased. A total of 38 DEGs were identified in nasal obstruction rats compared with normal rats. A ratio of RANKL/OPG in the mandible was elevated by nasal obstruction, while the Cyp1a1 was decreased. In vitro, the HIF-1α expression and RANKL/OPG ratio were upregulated by hypoxia while the Cyp1a1 expression was decreased. Pretreatment with Cyp1a1 activator, FICZ, could increase the expression of Cyp1a1 while attenuating the activation of HIF-1α and RANKL. CONCLUSION: Respiratory changes caused by nasal obstruction contribute to the decrease in Cyp1a1 expression in the mandible of juvenile rats, which is associated with disturbances in bone homeostasis controlled by the RANKL/OPG ratio.
Asunto(s)
Obstrucción Nasal , Animales , Ratas , Densidad Ósea/fisiología , Hipoxia , Mandíbula , Osteoprotegerina/genética , Ligando RANK/genética , Ratas Wistar , Microtomografía por Rayos X , Citocromo P-450 CYP1A1/metabolismoRESUMEN
It has been shown that macrophages can be endotoxin-tolerant under the stimulation of continuous endotoxin of Porphyromonas gingivalis. Macrophage transforms into M2-type which inhibits inflammation, and its pro-inflammatory cytokine secretion is reduced to avoid the tissue damaged by inflammation. This experiment established the corresponding animal model to explore the relative number, phenotypic proportion, and function of spleen macrophages in mice with chronic periodontitis. Twenty 16-week-old mice were randomly divided into a true ligation group (LFP group) and a pseudo-ligation group (LFC group). The periodontitis in the LFP group was induced by experimental ligation, and the LFC group was treated as a control. After 10 days of ligation, the maxilla was taken, IHC and HE staining were performed to observe the pathological changes of periodontal tissues, and IHC staining was performed to observe the RANKL/OPG ratio. Spleen mononuclear cells were isolated and counted. The ratio of M1 and M2 phenotypes was determined by fluorescence-activated cell sorting (FACS) in the spleen. The relative expression levels of macrophage-associated inflammatory cytokine TNF-a, IL-1ß and anti-inflammatory cytokine IL-10 mRNA were detected by real-time PCR. Compared with the control group (LFC:M2/M110.04%), the M2 ratio among spleen mature macrophages in the periodontitis group (LFP: M2/M135.86%) was significantly increased (P<0.01) in the spleen. The proportion of M1 macrophages was not significantly different, and the ratio of M1/M2 was significantly decreased (P<0.05) in the spleen. But the expression level of M1-type macrophage inflammatory factor TNF-a mRNA was inclined. Chronic periodontitis can up-regulate the proportion of M2 macrophages, decrease the ratio of macrophage phenotype M1/M2, and incline the expression of pro-inflammatory factor TNF-a mRNA.
Asunto(s)
Resorción Ósea , Periodontitis Crónica , Animales , Ratones , Bazo , Modelos Animales de Enfermedad , Inflamación , Citocinas , Endotoxinas , MacrófagosRESUMEN
BACKGROUND: Hitherto, the bulk of diagnostic criteria regards Aspergillus-specific immunoglobulin E as a key item, and regard IgG as an auxiliary method in diagnose. Nevertheless, there is no conclusive study in summarize the performance of IgG and IgE diagnosing ABPA. METHODS: We conducted a systematic review to identify studies report results of IgE and IgG detection in diagnosing ABPA. QUADAS-2 tool was used to evaluate included studies, and we applied the HSROC model to calculate the pooled sensitivity and specificity. Deeks' funnel was derived to evaluated the public bias of included studies, and Cochrane Q test and I2 statistic were used to test the heterogeneity. RESULTS: Eleven studies were included in this study (1127 subjects and 215 for IgE and IgG). Deeks's test for IgE and IgG were 0.10 and 0.19. The pooled sensitivity and specificity for IgE were 0.83 (95%CI: 0.77, 0.90) and 0.89 (0.83, 0.94), and for IgG were 0.93 (0.87, 0.97) and 0.73 (0.62,0.82), with P value < 0.001. The PLR and NLR for IgE were 7.80 (5.03,12.10) and 0.19 (0.13,0.27), while for IgG were 3.45 (2.40,4.96) and 0.09 (0.05,0.17). The combined diagnostic odds ratio and diagnostic score were 41.49 (26.74,64.36) and3.73 (3.29,4.16) for IgE, respectively, and were 38.42 (19.23,76.79) and 3.65 (2.96,4.34) for IgG. CONCLUSION: The sensitivity for IgG diagnosing ABPA is higher than IgE, while the specificity for IgE is higher. IgG might be able to play a more important role in filtering ABPA patients.
Asunto(s)
Aspergilosis Broncopulmonar Alérgica , Humanos , Aspergilosis Broncopulmonar Alérgica/diagnóstico , Aspergillus fumigatus , Anticuerpos Antifúngicos , Inmunoensayo , Inmunoglobulina E , Inmunoglobulina GRESUMEN
The aim of the present study is to determine the associations between lower body muscle strength qualities and change of direction (CoD) performance. Three databases were used to perform a systematic literature search up to September 30, 2022. Based on the studies that met the inclusion criteria, we calculated Pearson's r correlation coefficient to examine the relationships between muscle strength qualities and CoD performance. The quality of the studies included was evaluated by the modified version of the Downs and Black Quality Index Tool. Heterogeneity was determined via the Q statistic and I 2, and Egger's test was used to assess small study bias. The results revealed that lower body maximal strength (pooled: r=- 0.54, dynamic: r=- 0.60, static: r=- 0.41), joint strength (pooled: r=- 0.59, EXT-ecc: r=- 0.63, FLEX-ecc: r=- 0.59), reactive strength (r=- 0.42) and power (pooled: r=- 0.45, jump height: r=- 0.41, jump distance: r=- 0.60, peak power: r=- 0.41) were negatively and moderately related to CoD performance. To conclude, the results highlight that a number of muscle strength qualities are associated with CoD performance and are pertinent to specific phases of a directional change. It should be noted that the conclusions of this study do not establish causality, and further research is needed to better understand their training effects and underlying mechanisms.
Asunto(s)
Rendimiento Atlético , Humanos , Rendimiento Atlético/fisiología , Fuerza Muscular/fisiologíaRESUMEN
Long noncoding RNAs (lncRNAs) play crucial roles in various biological processes, and they are considered to be closely associated with the pathogenesis of intestinal diseases. However, the role and expression of lncRNAs in intestinal damage during weaning stress remain unknown. Herein, we investigated the expression profiles of jejunal tissue from weaning piglets at 4 and 7 d after weaning (groups W4 and W7, respectively) and from suckling piglets on the same days (groups S4 and S7, respectively). Genome-wide analysis of lncRNAs was also performed using RNA sequencing technology. A total of 1809 annotated lncRNAs and 1612 novel lncRNAs were obtained from the jejunum of piglets. In W4 vs. S4, a total of 331 lncRNAs showed significant differential expression, and a total of 163 significantly differentially expressed lncRNAs (DElncRNAs) was identified in W7 vs. S7. Biological analysis indicated that DElncRNAs were involved in intestinal diseases, inflammation, and immune functions, and were mainly enriched in the Jak-STAT signaling pathway, inflammatory bowel disease, T cell receptor signaling pathway, B cell receptor signaling pathway and intestinal immune network for IgA production. Moreover, we found that lnc_000884 and target gene KLF5 were significantly upregulated in the intestine of weaning piglets. The overexpression of lnc_000884 also significantly promoted the proliferation and depressed apoptosis of IPEC-J2 cells. This result suggested that lnc_000884 may contribute to repairing intestinal damage. Our study identified the characterization and expression profile of lncRNAs in the small intestine of weaning piglets and provided new insights into the molecular regulation of intestinal damage during weaning stress.
Asunto(s)
ARN Largo no Codificante , Porcinos , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Destete , Intestino Delgado/metabolismo , YeyunoRESUMEN
BACKGROUND: Periodontitis is the most common oral disease and is closely related to immune infiltration in the periodontal microenvironment and its poor prognosis is related to the complex immune response. The progression of periodontitis is closely related to necroptosis, but there is still no systematic study of long non-coding RNA (lncRNA) associated with necroptosis for diagnosis and treatment of periodontitis. MATERIAL AND METHODS: Transcriptome data and clinical data of periodontitis and healthy populations were obtained from the Gene Expression Omnibus (GEO) database, and necroptosis-related genes were obtained from previously published literature. FactoMineR package in R was used to perform principal component analysis (PCA) for obtaining the necroptosis-related lncRNAs. The core necroptosis-related lncRNAs were screened by the Linear Models for Microarray Data (limma) package in R, PCA principal component analysis and lasso algorithm. These lncRNAs were then used to construct a classifier for periodontitis with logistic regression. The receiver operating characteristic (ROC) curve was used to evaluate the sensitivity and specificity of the model. The CIBERSORT method and ssGSEA algorithm were used to estimate the immune infiltration and immune pathway activation of periodontitis. Spearman's correlation analysis was used to further verify the correlation between core genes and periodontitis immune microenvironment. The expression level of core genes in human periodontal ligament cells (hPDLCs) was detected by RT-qPCR. RESULTS: A total of 10 core necroptosis-related lncRNAs (10-lncRNAs) were identified, including EPB41L4A-AS1, FAM30A, LINC01004, MALAT1, MIAT, OSER1-DT, PCOLCE-AS1, RNF144A-AS1, CARMN, and LINC00582. The classifier for periodontitis was successfully constructed. The Area Under the Curve (AUC) was 0.952, which suggested that the model had good predictive performance. The correlation analysis of 10-lncRNAs and periodontitis immune microenvironment showed that 10-lncRNAs had an impact on the immune infiltration of periodontitis. Notably, the RT-qPCR results showed that the expression level of the 10-lncRNAs obtained was consistent with the chip analysis results. CONCLUSIONS: The 10-lncRNAs identified from the GEO dataset had a significant impact on the immune infiltration of periodontitis and the classifier based on 10-lncRNAs had good detection efficiency for periodontitis, which provided a new target for diagnosis and treatment of periodontitis.
Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Necroptosis , Algoritmos , Bases de Datos Factuales , Estado de SaludRESUMEN
Objective: to (1) systematically review the chronic effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on maximal fat oxidation (MFO) in overweight and obese adults, and (2) explore MFO influencing factors and its dose-response relationships with HIIT and MICT. Methods: Studies using a between-group design involving overweight and obese adults and assessing the effect of HIIT and MICT on MFO were included. A meta-analysis on MFO indices was conducted, and the observed heterogeneities were explored through subgroup, regression, and sensitivity analyses. Results: Thirteen studies of moderate to high quality with a total of 519 overweight and obese subjects were included in this meta-analysis (HIIT, n = 136; MICT, n = 235; Control, n = 148). HIIT displayed a statistically significant favorable effect on MFO compared to no-training (MD = 0.07; 95%CI [0.03 to 0.11]; I2 = 0%). Likewise, MICT displayed a statistically significant favorable effect on MFO compared to no-training (MD = 0.10; 95%CI [0.06 to 0.15]; I2 = 95%). Subgroup and regression analyses revealed that exercise intensity (Fatmax vs. non-Fatmax; %VO2peak), exercise mode, BMI, and VO2peak all significantly moderated MICT on MFO. When analyzing studies that have directly compared HIIT and MCIT in obese people, it seems there is no difference in the MFO change (MD = 0.01; 95%CI [-0.02 to 0.04]; I2 = 64%). No publication bias was found in any of the above meta-analyses (Egger's test p > 0.05 for all). Conclusion: Both HIIT and MICT are effective in improving MFO in overweight and obese adults, and they have similar effects. MCIT with an intensity of 65-70% VO2peak, performed 3 times per week for 60 min per session, will optimize MFO increases in overweight and obese adults. Given the lack of studies examining the effect of HIIT on MFO in overweight and obese adults and the great diversity in the training protocols in the existing studies, we were unable to make sound recommendations for training.
RESUMEN
Purpose: This study aimed to examine the short-term effects of SARS-CoV-2 infection and return to sport (RTS) on neuromuscular performance, body composition, and mental health in well-trained young kayakers. Methods: 17 vaccinated kayakers (8 male, 9 female) underwent body composition assessment, peak power output bench press (BP), and 40-s maximum repetition BP tests 23.9 ± 1.6 days before and 22.5 ± 1.6 days after a SARS-CoV-2 infection. A linear transducer was used to examine the BP performance. The perception of training load and mental health were quantified with Borg's CR-10 scale and the Hooper questionnaire before and after infection. The difference and relationship of variables were used Wilcoxon test, Student t-test, Pearson's, and Spearman's r correlation coefficients. Results: There was a significant increase in body mass, fat-free mass, and skeletal muscle mass, but no significant changes in body fat, fat mass, and all BP performance after infection (p < 0.05). There was a significant reduction in training hours per week, session rating of perceived exertion (sRPE), internal training load (sRPE-TL), fatigue, muscle soreness levels, and Hooper index, but no changes in sleep quality and stress levels after infection (p < 0.05). The training and mental health during the RTS period was significantly correlated (r = -0.85 to 0.70) with physical performance after infection. Conclusion: A SARS-CoV-2 infection did not appear to impair the upper-body neuromuscular performance and mental health of vaccinated well-trained young kayakers after a short-term RTS period. These findings can assist coaches, and medical and club staff when guiding RTS strategies after other acute infections or similar restrictions.
RESUMEN
The aim of this study was to determine the optimal velocity loss (VL) threshold that maximises the post activation potentiation (PAP) stimulus for achieving larger and more consistent performance gains in track and field athletes. Twenty-two athletes from athletics participated in four back squat PAP tests with four different VL threshold (5%, 10%, 15% and 20% VL) at an intensity of 85%1RM. Countermovement jump (CMJ) height, power, and momentum were assessed before, and 10 s, 4, 8, 12, 16 minutes after the PAP condition. Repetitions of the squat in all the PAP conditions were also recorded. Only the 5% VL condition produced significant improvements in height (ES = 0.73, P = 0.038), peak power output (ES = 0.73, P = 0.038) and momentum (ES = 0.72, P = 0.041) of CMJ, and these changes appeared 8 minutes after the condition. The total number of repetitions during the 5% VL condition was significantly lower than that observed in the 15% (P = 0.003) and 20% VL (P < 0.001) trials. The results from this study indicate that 5%VL during the 2 sets preconditioning squat at 85%1RM was optimal for eliciting PAP in a CMJ exercise, and resulted in significant increases at the 8-min recovery period. The same squat condition also had the least number of repetitions. However, considering the efficiency in practice, athletes can also choose the rest time of 4-min, which can also achieve similar results.