Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 776, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123103

RESUMEN

BACKGROUND: Transcription factors (TFs) of plant-specific SHORT INTERNODES (SHI) family play a significant role in regulating development and metabolism in plants. In Artemisia annua, various TFs from different families have been discovered to regulate the accumulation of artemisinin. However, specific members of the SHI family in A. annua (AaSHIs) have not been identified to regulate the biosynthesis of artemisinin. RESULTS: We found five AaSHI genes (AaSHI1 to AaSHI5) in the A. annua genome. The expression levels of AaSHI1, AaSHI2, AaSHI3 and AaSHI4 genes were higher in trichomes and young leaves, also induced by light and decreased when the plants were subjected to dark treatment. The expression pattern of these four AaSHI genes was consistent with the expression pattern of four structural genes of artemisinin biosynthesis and their specific regulatory factors. Dual-luciferase reporter assays, yeast one-hybrid assays, and transient transformation in A. annua provided the evidence that AaSHI1 could directly bind to the promoters of structural genes AaADS and AaCYP71AV1, and positively regulate their expressions. This study has presented candidate genes, with AaSHI1 in particular, that can be considered for the metabolic engineering of artemisinin biosynthesis in A. annua. CONCLUSIONS: Overall, a genome-wide analysis of the AaSHI TF family of A. annua was conducted. Five AaSHIs were identified in A. annua genome. Among the identified AaSHIs, AaSHI1 was found to be localized to the nucleus and activate the expression of structural genes of artemisinin biosynthesis including AaADS and AaCYP71AV1. These results indicated that AaSHI1 had positive roles in modulating artemisinin biosynthesis, providing candidate genes for obtaining high-quality new A. annua germplasms.


Asunto(s)
Artemisia annua , Artemisininas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Filogenia
2.
Plant Physiol ; 192(2): 1483-1497, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36810650

RESUMEN

Glandular secretory trichomes (GSTs) can secrete and store a variety of specific metabolites. By increasing GST density, valuable metabolites can be enhanced in terms of productivity. However, the comprehensive and detailed regulatory network of GST initiation still needs further investigation. By screening a complementary DNA library derived from young leaves of Artemisia annua, we identified a MADS-box transcription factor, AaSEPALLATA1 (AaSEP1), that positively regulates GST initiation. Overexpression of AaSEP1 in A. annua substantially increased GST density and artemisinin content. The HOMEODOMAIN PROTEIN 1 (AaHD1)-AaMYB16 regulatory network regulates GST initiation via the jasmonate (JA) signaling pathway. In this study, AaSEP1 enhanced the function of AaHD1 activation on downstream GST initiation gene GLANDULAR TRICHOME-SPECIFIC WRKY 2 (AaGSW2) through interaction with AaMYB16. Moreover, AaSEP1 interacted with the JA ZIM-domain 8 (AaJAZ8) and served as an important factor in JA-mediated GST initiation. We also found that AaSEP1 interacted with CONSTITUTIVE PHOTOMORPHOGENIC 1 (AaCOP1), a major repressor of light signaling. In this study, we identified a MADS-box transcription factor that is induced by JA and light signaling and that promotes the initiation of GST in A. annua.


Asunto(s)
Artemisia annua , Tricomas , Tricomas/genética , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Inorg Chem ; 63(29): 13568-13575, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38973105

RESUMEN

Capturing and separating the greenhouse gas SF6 from nitrogen N2 have significant greenhouse mitigation potential and economic benefits. We used a pore engineering strategy to manipulate the pore environment of the metal-organic framework (MOF) by incorporating organic functional groups (-NH2). This resulted in an enhanced adsorption of SF6 and separation of the SF6/N2 mixture in the MOF. The introduction of amino (-NH2) groups into YTU-29 resulted in a reduction of the Brunauer-Emmett-Teller surface but an increase in interactions with SF6 within the confined pores. Water-stable YTU-29-NH2 showed a significantly higher SF6 uptake (95.5 cm3/g) than YTU-29 (77.4 cm3/g). The results of the breakthrough experiments show that YTU-29-NH2 has a significantly improved separation performance for SF6/N2 mixtures, with a high SF6 capture of 0.88 mmol/g compared to 0.56 mmol/g by YTU-29. This improvement is due to the suitable pore confinement and accessible -NH2 groups on pore surfaces. Considering its excellent regeneration ability and cycling performance, ultrastable YTU-29-NH2 demonstrates great potential for SF6 capturing and SF6/N2 separation.

4.
BMC Urol ; 24(1): 165, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090582

RESUMEN

BACKGROUND: We investigated the feasibility of the tertiary lymphoid structure (TLS) as a prognostic marker for penile squamous cell carcinoma(SCC). METHODS: We retrospectively collected data from 83 patients with penile squamous cell carcinoma. H&E-stained slides were reviewed for TLS density. In addition, clinical parameters were analyzed, the prognostic value of these parameters on overall survival (OS) was evaluated using ‒ Kaplan-Meier survival curves, and the prognostic value of influencing factors was evaluated using Cox multifactor design nomogram analysis. RESULT: BMI, T, N, and M are significant in the survival curve with or without tertiary lymphoid structure. BMI, T, N, M and TLS were used to construct a prognostic model for penile squamous cell carcinoma, and the prediction accuracy reached a consensus of 0.884(0.835-0.932), and the decision consensus reached 0.581(0.508-0.655). CONCLUSION: TLS may be a positive prognostic factor for penile squamous cell carcinoma, and the combination of BMI, T, N and M can better evaluate the prognosis of patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Pene , Estructuras Linfoides Terciarias , Masculino , Neoplasias del Pene/patología , Neoplasias del Pene/mortalidad , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/mortalidad , Pronóstico , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Estructuras Linfoides Terciarias/patología , Adulto , Tasa de Supervivencia
5.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125712

RESUMEN

Liver lipid metabolism disruption significantly contributes to excessive fat buildup in waterfowl. Research suggests that the supplementation of Threonine (Thr) in the diet can improve liver lipid metabolism disorder, while Thr deficiency can lead to such metabolic disorders in the liver. The mechanisms through which Thr regulates lipid metabolism remain unclear. STAT3 (signal transducer and activator of transcription 3), a crucial transcription factor in the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway, participates in various biological processes, including lipid and energy metabolism. This research investigates the potential involvement of STAT3 in the increased lipid storage seen in primary duck hepatocytes as a result of a lack of Thr. Using small interfering RNA and Stattic, a specific STAT3 phosphorylation inhibitor, we explored the impact of STAT3 expression patterns on Thr-regulated lipid synthesis metabolism in hepatocytes. Through transcriptome sequencing, we uncovered pathways related to lipid synthesis and metabolism jointly regulated by Thr and STAT3. The results showed that Thr deficiency increases lipid deposition in primary duck hepatocytes (p < 0.01). The decrease in protein and phosphorylation levels of STAT3 directly caused this deposition (p < 0.01). Transcriptomic analysis revealed that Thr deficiency and STAT3 knockdown jointly altered the mRNA expression levels of pathways related to long-chain fatty acid synthesis and energy metabolism (p < 0.05). Thr deficiency, through mediating STAT3 inactivation, upregulated ELOVL7, PPARG, MMP1, MMP13, and TIMP4 mRNA levels, and downregulated PTGS2 mRNA levels (p < 0.01). In summary, these results suggest that Thr deficiency promotes lipid synthesis, reduces lipid breakdown, and leads to lipid metabolism disorders and triglyceride deposition by downregulating STAT3 activity in primary duck hepatocytes.


Asunto(s)
Patos , Hepatocitos , Factor de Transcripción STAT3 , Treonina , Triglicéridos , Animales , Factor de Transcripción STAT3/metabolismo , Hepatocitos/metabolismo , Fosforilación , Treonina/metabolismo , Triglicéridos/metabolismo , Metabolismo de los Lípidos , Células Cultivadas
6.
J Integr Plant Biol ; 66(7): 1295-1312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695649

RESUMEN

Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Raíces de Plantas , Triticum , Agua , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/metabolismo , Sitios de Carácter Cuantitativo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Fisiológico/genética , Estudio de Asociación del Genoma Completo , Resistencia a la Sequía
7.
Plant Cell Physiol ; 64(7): 771-785, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37098222

RESUMEN

Artemisinin, a sesquiterpene lactone obtained from Artemisia annua, is an essential therapeutic against malaria. YABBY family transcription factor AaYABBY5 is an activator of AaCYP71AV1 (cytochrome P450-dependent hydroxylase) and AaDBR2 (double-bond reductase 2); however, the protein-protein interactions of AaYABBY5, as well as the mechanism of its regulation, have not yet been elucidated. AaWRKY9 protein is a positive regulator of artemisinin biosynthesis that activates AaGSW1 (glandular trichome-specific WRKY1) and AaDBR2 (double-bond reductase 2). In this study, YABBY-WRKY interactions are revealed to indirectly regulate artemisinin production. AaYABBY5 significantly increased the activity of the luciferase (LUC) gene fused to the promoter of AaGSW1. Toward the molecular basis of this regulation, AaYABBY5 interaction with AaWRKY9 protein was found. The combined effectors AaYABBY5 + AaWRKY9 showed synergistic effects toward the activities of AaGSW1 and AaDBR2 promoters, respectively. In AaYABBY5 overexpression plants, the expression of GSW1 was found to be significantly increased when compared to that of AaYABBY5 antisense or control plants. In addition, AaGSW1 was identified as an upstream activator of AaYABBY5. Further, it was found that AaJAZ8, a transcriptional repressor of jasmonate signaling, interacted with AaYABBY5 and attenuated its activity. Co-expression of AaYABBY5 and anti-AaJAZ8 in A. annua increased the activity of AaYABBY5 toward artemisinin biosynthesis. This current study provides the first indication of the molecular basis of regulation of artemisinin biosynthesis through YABBY-WRKY interactions, which are regulated through AaJAZ8. This knowledge presents AaYABBY5 overexpression plants as a powerful genetic resource for artemisinin biosynthesis.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Artemisininas/metabolismo
8.
New Phytol ; 237(6): 2224-2237, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564967

RESUMEN

Artemisinin, a sesquiterpene compound synthesized and stored in the glandular trichome of Artemisia annua leaves, has been used to treat malaria. Previous studies have shown that both light and jasmonic acid (JA) can promote the biosynthesis of artemisinin, and the promotion of artemisinin by JA is dependent on light. However, the specific molecular mechanism remains unclear. Here, we report a MYB transcription factor, AaMYB108, identified from transcriptome analysis of light and JA treatment, as a positive regulator of artemisinin biosynthesis in A. annua. AaMYB108 promotes artemisinin biosynthesis by interacting with a previously characterized positive regulator of artemisinin, AaGSW1. Then, we found that AaMYB108 interacted with AaCOP1 and AaJAZ8, respectively. The function of AaMYB108 was influenced by AaCOP1 and AaJAZ8. Through the treatment of AaMYB108 transgenic plants with light and JA, it was found that the promotion of artemisinin by light and JA depends on the presence of AaMYB108. Taken together, our results reveal the molecular mechanism of JA regulating artemisinin biosynthesis depending on light in A. annua. This study provides new insights into the integration of light and phytohormone signaling to regulate terpene biosynthesis in plants.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Factores de Transcripción , Proteínas de Plantas/genética
9.
Plant Cell Environ ; 46(5): 1562-1581, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36695201

RESUMEN

Low light stress seriously decreased wheat grain number through the formation of aborted spike during the reproductive period and induced new tiller regeneration to offset the loss of grain number. However, the mechanism by which plants coordinate spike aborted growth and the regeneration of new tillers remains unknown. To better understand this coordinated process, morphological, physiological and transcriptomic analyses were performed under low light stress at the young microspore stage. Our findings indicated that leaves exhausted most stored carbohydrates in 1 day of darkness. However, spike and uppermost internode (UI) were converted from sink to source, due to increased abscisic acid (ABA) content and decreased cytokinin content. During this process, genes encoding amylases, Sugars Will Eventually be Exported Transporters (SWEET) and sucrose transporters or sucrose carriers (SUT/SUC) were upregulated in spike and UI, which degraded starch into soluble sugars and loaded them into the phloem. Subsequently, soluble sugars were transported to tiller node (TN) where cytokinin and auxin content increased and ABA content decreased, followed by unloading into TN cells by upregulated cell wall invertase (CWINV) genes and highly expressed H+ /hexose symporter genes. Finally, expansin genes integrated the sugar pathway and hormone pathway, and regulate the formation of new tillers directly.


Asunto(s)
Carbohidratos , Triticum , Triticum/fisiología , Ácido Abscísico/metabolismo , Proteínas de Transporte de Membrana/genética , Sacarosa/metabolismo , Citocininas , Azúcares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Exp Bot ; 74(18): 5441-5457, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37402253

RESUMEN

Transcriptional regulation is crucial to control of gene expression. Both spatio-temporal expression patterns and expression levels of genes are determined by the interaction between cis-acting elements and trans-acting factors. Numerous studies have focused on the trans-acting factors that mediate transcriptional regulatory networks. However, cis-acting elements, such as enhancers, silencers, transposons, and natural variations in the genome, are also vital for gene expression regulation and could be utilized by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing to improve crop quality and yield. In this review, we discuss current understanding of cis-element-mediated transcriptional regulation in major crops, including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), as well as the latest advancements in gene editing techniques and their applications in crops to highlight prospective strategies for crop breeding.


Asunto(s)
Edición Génica , Oryza , Edición Génica/métodos , Sistemas CRISPR-Cas , Estudios Prospectivos , Genoma de Planta/genética , Fitomejoramiento , Productos Agrícolas/genética , Regulación de la Expresión Génica , Oryza/genética , Transactivadores/genética
11.
Inorg Chem ; 62(37): 15195-15205, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656912

RESUMEN

Metal-organic frameworks (MOFs) have attracted extensive attention in methane (CH4) purification and storage. Specially, multinuclear cluster-based MOFs usually have prominent performance because of large cluster size and abundant open metal sites. However, compared to diverse combinations of organic linkers, one MOF with two or more multinuclear clusters is difficult to achieve. In this paper, we demonstrate a mixed multinuclear cluster strategy, which successfully led to three new heterometallic MOFs (SNNU-328-330) with the same common H3TATB [2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine] tritopic linker and six types of multinuclear clusters ([YCd(COO)4(µ2-H2O)], [YCd2(COO)8], [In3(COO)6(µ3-OH)], [In3Eu2(COO)9(µ3-OH)3(µ4-O)], [Y9(COO)12(µ3-OH)14] and [Y2Cd8(COO)16(µ2-H2O)4(µ3-OH)8]). Three MOF adsorbents all show great potentials to remove the impurities (CO2 and C2-hydrocarbons) in natural gas and show prominent high-pressure methane storage capacity. Among them, the ideal adsorbed solution theory separation ratios of equimolar C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 at 298 K for SNNU-328 reach to 29.7-16.0, 19.1-8.2, 33.2-10.3, and 74.3-8.5, which have surpassed many famous MOF adsorbents. Dynamic breakthrough experiments conducted at 273 and 298 K showed that SNNU-330 can separate CH4 from C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 mixtures with the breakthrough interval times of about 48.2, 17.9, 37.2, and 17.1 min g-1 (273 K, 1 bar, v/v = 50/50, 2 mL min-1), respectively. Remarkably, SNNU-329 exhibits extremely high methane storage performance at 298 K with the total uptake and working capacity of 192 cm3 cm-3 (95 bar) and 171 cm3 cm-3 (65 bar) due to the synergistic effects of high surface area, suitable pore sizes, and multiple open metal sites.

12.
Inorg Chem ; 62(49): 20279-20287, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38032042

RESUMEN

Comprehensive understanding of substituent groups located on the pore surface of metal-organic frameworks (which we call substituent engineering herein) can help to promote gas adsorption and catalytic performance through ligand functionalization. In this work, pore-space-partitioned metal-organic frameworks (PSP MOFs) were selected as a platform to evaluate the effect of organic functional groups on CO2 adsorption, separation, and catalytic conversion. Twelve partitioned acs metal-organic frameworks (pacs-MOFs, named SNNU-25-Rn here) containing different functional groups were synthesized, which can be classified into electron-donor groups (-OH, -NH2, -CH3, and -OCH3) and electron-acceptor groups (-NO2, -F, -Cl, and -Br). The experimental results showed that SNNU-25-Rn with electron donors usually perform better than those with electron acceptors for the comprehensive utilization of CO2. The CO2 uptake of the 12 SNNU-25-Rn MOFs ranged from 30.9 to 183.6 cm3 g-1 at 273 K and 1 bar, depending on the organic functional groups. In particular, SNNU-25-OH showed the highest CO2 adsorption, SNNU-25-CH3 had the highest IAST of CO2/CH4 (36.1), and SNNU-25-(OH)2 showed the best catalytic activity for the CO2 cycloaddition reaction. The -OH functionalized MOFs with excellent performance may be attributed to the Lewis acid-base and hydrogen-bonding interactions between -OH groups and the CO2 molecules. This work modulated the effect of the microenvironment of MOFs on CO2 adsorption, separation, and catalysis in terms of substituents, providing valuable information for the precise design of porous MOFs with a comprehensive utilization of CO2.

13.
Mol Biol Rep ; 50(4): 3557-3568, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787056

RESUMEN

BACKGROUND: Lung cancer is a high incidence cancer on a worldwide basis and has become a major public health problem. Lung adenocarcinoma (LUAD) makes up approximately half of all lung cancers and is a threat to human health. Long non-coding RNAs (lncRNAs) is an important regulator of the development and progression of lung adenocarcinoma. In this manuscript we examined the role and potential mechanism of lncRNA PCAT6 in the development of LUAD. METHODS AND RESULTS: Differences in lncRNA PCAT6 levels between LUAD samples and normal samples were first explored in the GEPIA database. We found that lncRNA PCAT6 expression was elevated, which was also validated in lung adenocarcinoma tissues and cell lines. Using western blotting, CCK-8, EdU, wound healing and transwell assays, we found that knockdown of lncRNA PCAT6 inhibited EMT, proliferation, migration, and invasion of LUAD cells. We noted a predicted a binding site for lncRNA PCAT6 and miR-545-3p through conducting bioinformatic analyses, and their binding was subsequently verified by a dual-luciferase reporter assay. Rescue experiments confirmed that miR-545-3p inhibitor partially abolished the inhibition function of lncRNA PCAT6 knockdown on LUAD cells. In addition, we predicted the downstream target genes of miR-545-3p and verified them by RT-qPCR. We found that EGFR was reduced in the silence of lncRNA PCAT6 and upregulated after miR-545-3p inhibition. CONCLUSION: This study demonstrates that lncRNA PCAT6 promotes a more aggressive LUAD phenotype by sponging miR-545-3p. This finding may provide new ideas for the treatment of lung cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Movimiento Celular/genética , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Adenocarcinoma/genética , Adenocarcinoma/patología , Pulmón/metabolismo
14.
J Clin Lab Anal ; 37(8): e24896, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198144

RESUMEN

BACKGROUND: Sudden sensorineural hearing loss (SSNHL) is a multifactorial disease, and its etiology is still unknown. SSNHL may be caused by environmental factors and genetic changes. PCDH15 is associated with susceptibility to hearing loss. The relationship between PCDH15 and SSNHL remains unknown. METHODS: In this study, the potential association between PCDH15 polymorphism and SSNHL in Chinese population was evaluated. Two single nucleotide polymorphisms PCDH15-rs7095441 and rs11004085 in 195 SSNHL patients and 182 healthy controls were determined by TaqMan technology. RESULTS: In Chinese population, the TT genotype and T allele of rs7095441 are associated with increased susceptibility to SSNHL. The relationships between rs7095441 and the degree of hearing loss were analyzed, and TT genotype increased the risk of hearing loss. Among SSNHL patients, patients with TT genotype of rs7095441 have an increased risk of vertigo. CONCLUSION: This study found that the TT genotype of SNP rs7095441 can increase the risk of SSNHL in Chinese population.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Humanos , Pueblos del Este de Asia , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/genética , Polimorfismo de Nucleótido Simple/genética , Protocadherinas
15.
Eur Arch Otorhinolaryngol ; 280(4): 1603-1610, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36030467

RESUMEN

PURPOSE: To assess awareness and recognition of vestibular function tests in otorhinolaryngology medical staffs, especially the vestibular evoked myogenic potentials (VEMP) testing in patients with obstructive sleep apnea (OSA). METHODS: A survey was delivered via either email or a social media app. The medical staffs of the Chinese Medical Association of Otolaryngology Head and Neck Surgery from various branches were enrolled. Study data were collected and managed with an online data collection tool. RESULTS: A total of 1781 emails and 623 social media messages were sent to 2404 otorhinolaryngology medical staffs. One hundred and fifty-seven of them participated in the survey, including 24 via emails and 133 via the social media app. Regarding the knowledge of VEMP, only 59 (37.6%) of them agreed that OSA could be related to vertigo/dizziness/imbalance and 28 (17.8%) believed that OSA could result in VEMP abnormalities and would factor this in diagnosing the impairment of the vestibular function of OSA patients. A total of 7.6% of the respondents had never heard of the VEMP tests. Responses regarding the minimum age at which VEMP are possible ranged from younger than 6 months to greater than 18 years of age. Beliefs regarding the utility and reliability of VEMP varied, with 'unsure' being the most frequent response. In addition, only 17.8% of otolaryngologists indicated some access to the VEMP test. CONCLUSIONS: Knowledge and beliefs about the role of VEMP in diagnosing otolithic organ dysfunction caused by OSA in otorhinolaryngology vary widely. It is important for otorhinolaryngology medical staffs to learn the latest literatures and updated knowledge through continuing education.


Asunto(s)
Otolaringología , Apnea Obstructiva del Sueño , Potenciales Vestibulares Miogénicos Evocados , Humanos , Lactante , Potenciales Vestibulares Miogénicos Evocados/fisiología , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Apnea Obstructiva del Sueño/diagnóstico
16.
Cancer Cell Int ; 22(1): 375, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457028

RESUMEN

BACKGROUND: During the development of cervical cancer, HPV infection causes a series of changes in transcription factors and microRNAs. But their relationships with pathogenic processes are not clear. METHODS: Base on previous study, to analyse the relationship among HPV16 infection and the related transcription factors, related miRNAs, so as to further understand the molecular mechanism of HPV16 infection to cervical cancer, around the HPV16 related miRNAs we have reported, the methods of bioinformatics prediction, histology, cell model in vitro and molecular interaction were used for prediction and validation respectively RESULTS: The results showed that NF-κB family members(c-Rel, p65 and p50) were identified as main HPV16rmiR-transcription factors. They have different expressive characteristics in cervical lesions and play tumorigenesis or progression roles in different periods of HPV16 infection. c-Rel, p65 and p50 act as mediators which link the HPV16 E5 and HPV16 related miRNAs. Among them, c-Rel affects the occurrence and progression of cervical cancer during whole HPV16 infection stage through miR133a-3p-modulated mir-379-369 cluster with a positive feedback way which targeted c-Rel itself and its positive regulator AKT3. CONCLUSION: So in the course of HPV16 infection, the E5, c-Rel, and miR-133a-3p form a positive feedback system which aim at mir-379-369 cluster for the whole process from HPV16 infection to cervical cancer.

17.
Inorg Chem ; 61(27): 10493-10501, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35763775

RESUMEN

The development of paraffin-selective adsorbents is desirable but extremely challenging because adsorbents usually prefer olefin over paraffin. Herein, a new pore-window-partition strategy is proposed for the rational design of highly efficient paraffin-preferred metal-organic framework (MOF) adsorbents. The power of this strategy is demonstrated by stepwise installations of linear bidentate N-donor linkers into a prototype MOF (SNNU-201) to produce a series of partitional MOF adsorbents (SNNU-202-204). With continuous pore-window partitions from SNNU-201 to SNNU-204, the isosteric heat of adsorption can be tuned from -34.4 to -19.4 kJ mol-1 for ethylene and from -25.5 to -20.7 kJ mol-1 for ethane. Accordingly, partitional MOFs exhibit much higher ethane adsorption capacities, especially for SNNU-204 (104.6 cm3 g-1), representing nearly 4 times as much ethane as the prototypical counterpart (SNNU-201; 27.5 cm3 g-1) under ambient conditions. The C2H6/C2H4 ideal adsorbed solution theory selectivity, dynamic breakthrough experiments, and theoretical simulations further indicate that pore-window partition is a promising and universal strategy for the exploration of highly efficient paraffin-selective MOF adsorbents.

18.
Inorg Chem ; 61(35): 14131-14139, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35998379

RESUMEN

The capture and fixation of CO2 under mild conditions is a cost-effective route to reduce greenhouse gases, but it is challenging because of the low conversion and selectivity issues. Metal-organic frameworks (MOFs) are promising in the fields of adsorption and catalysis because of their structural tunability and variability. However, the precise structural design of MOFs is always pursued and elusive. In this work, a metal-mixed MOF (SNNU-97-InV) was designed by precisely introducing single vanadium site into the isostructural In-MOF (SNNU-97-In). The single V sites clearly change the interactions between the MOF framework and CO2 molecules, leading to a 71.3% improvement in the CO2 adsorption capacity. At the same time, the enhanced light absorption enables SNNU-97-InV to efficiently convert CO2 into cyclic carbonates (CCs) with epoxides under illumination. Controlled experiments showed that the promoted performance of SNNU-97-InV may be that the V═O site can more easily combine with CO2 and convert them into an intermediate state under illumination, and the possible mechanism was thus speculated.

19.
Molecules ; 27(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014434

RESUMEN

Novel covalent organic framework (COF) composites containing a bipyridine multimetal complex were designed and obtained via the coordination interaction between bipyridine groups and metal ions. The obtained Pt and polyoxometalate (POM)-loaded COF complex (POM-Pt@COF-TB) exhibited excellent oxidation of methane. In addition, the resultant Co/Fe-based COF composites achieved great performance in an electrocatalytic oxygen evolution reaction (OER). Compared with Co-modified COFs (Co@COF-TB), the optimized bimetallic modified COF composites (Co0.75Fe0.25@COF-TB) exhibited great performance for electrocatalytic OER activity, showing a lower overpotential of 331 mV at 10 mA cm-2. Meanwhile, Co0.75Fe0.25@COF-TB also possessed a great turnover frequency (TOF) value (0.119 s-1) at the overpotential of 330 mV, which exhibited high efficiency in the utilization of metal atoms and was better than that of many reported COF-based OER electrocatalysts. This work provides a new perspective for the future coordination of COFs with bimetallic or polymetallic ions, and broadens the application of COFs in methane conversion and electrocatalytic oxygen evolution.

20.
Molecules ; 27(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296667

RESUMEN

A unique porous material, namely, MXene/SiO2 hybrid aerogel, with a high surface area, was prepared via sol-gel and freeze-drying methods. The hierarchical porous hybrid aerogel possesses a three-dimensional integrated network structure of SiO2 cross-link with two-dimensional MXene; it is used not only as a scaffold to prepare sulfur-based cathode material, but also as an efficient functional separator to block the polysulfides shuttle. MXene/SiO2 hybrid aerogel as sulfur carrier exhibits good electrochemical performance, such as high discharge capacities (1007 mAh g-1 at 0.1 C) and stable cycling performance (823 mA h g-1 over 200 cycles at 0.5 C). Furthermore, the battery assembled with hybrid aerogel-modified separator remains at 623 mA h g-1 over 200 cycles at 0.5 C based on the conductive porous framework and abundant functional groups in hybrid aerogel. This work might provide further impetus to explore other applications of MXene-based composite aerogel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA