Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620039

RESUMEN

Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Procesamiento Proteico-Postraduccional , Streptococcus mutans , Animales , Acetilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Caries Dental/microbiología , Caries Dental/metabolismo , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Pequeño no Traducido/metabolismo , ARN Pequeño no Traducido/genética , Streptococcus mutans/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/patogenicidad , Virulencia , Femenino , Ratas
2.
Am J Hum Genet ; 109(4): 669-679, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35263625

RESUMEN

One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Humanos , Estilo de Vida , Polimorfismo de Nucleótido Simple , Transcriptoma
3.
Nat Chem Biol ; 19(5): 633-640, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702957

RESUMEN

Genome mining of biosynthetic pathways with no identifiable core enzymes can lead to discovery of the so-called unknown (biosynthetic route)-unknown (molecular structure) natural products. Here we focused on a conserved fungal biosynthetic pathway that lacks a canonical core enzyme and used heterologous expression to identify the associated natural product, a highly modified cyclo-arginine-tyrosine dipeptide. Biochemical characterization of the pathway led to identification of a new arginine-containing cyclodipeptide synthase (RCDPS), which was previously annotated as a hypothetical protein and has no sequence homology to non-ribosomal peptide synthetase or bacterial cyclodipeptide synthase. RCDPS homologs are widely encoded in fungal genomes; other members of this family can synthesize diverse cyclo-arginine-Xaa dipeptides, and characterization of a cyclo-arginine-tryptophan RCDPS showed that the enzyme is aminoacyl-tRNA dependent. Further characterization of the biosynthetic pathway led to discovery of new compounds whose structures would not have been predicted without knowledge of RCDPS function.


Asunto(s)
Productos Biológicos , Dipéptidos/genética , Bacterias/genética , Familia de Multigenes , Vías Biosintéticas/genética , Genoma Bacteriano
4.
Brain ; 147(1): 26-38, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37633259

RESUMEN

Restless legs syndrome (RLS) is responsive to opioid, dopaminergic and iron-based treatments. Receptor blocker studies in RLS patients suggest that the therapeutic efficacy of opioids is specific to the opioid receptor and mediated indirectly through the dopaminergic system. An RLS autopsy study reveals decreases in endogenous opioids, ß-endorphin and perhaps Met-enkephalin in the thalamus of RLS patients. A total opioid receptor knock-out (mu, delta and kappa) and a mu-opioid receptor knock-out mouse model of RLS show circadian motor changes akin to RLS and, although both models show sensory changes, the mu-opioid receptor knock mouse shows circadian sensory changes closest to those seen in idiopathic RLS. Both models show changes in striatal dopamine, anaemia and low serum iron. However, only in the total receptor knock-out mouse do we see the decreases in serum ferritin that are normally found in RLS. There are also decreases in serum iron when wild-type mice are administered a mu-opioid receptor blocker. In addition, the mu-opioid receptor knock-out mouse also shows increases in striatal zinc paralleling similar changes in RLS. Adrenocorticotropic hormone and α-melanocyte stimulating hormone are derived from pro-opiomelanocortin as is ß-endorphin. However, they cause RLS-like symptoms and periodic limb movements when injected intraventricularly into rats. These results collectively suggest that an endogenous opioid deficiency is pathogenetic to RLS and that an altered melanocortin system may be causal to RLS as well.


Asunto(s)
Analgésicos Opioides , Síndrome de las Piernas Inquietas , Humanos , Ratas , Ratones , Animales , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Síndrome de las Piernas Inquietas/diagnóstico , Síndrome de las Piernas Inquietas/tratamiento farmacológico , Melanocortinas/uso terapéutico , betaendorfina/uso terapéutico , Hierro , Dopamina
5.
Chem Soc Rev ; 53(5): 2643-2692, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38314836

RESUMEN

Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/química , Nanotecnología , Nanomedicina , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
6.
Proteins ; 92(6): 705-719, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38183172

RESUMEN

The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) characterized by 30 mutations in its spike protein, has rapidly spread worldwide since November 2021, significantly exacerbating the ongoing COVID-19 pandemic. In order to investigate the relationship between these mutations and the variant's high transmissibility, we conducted a systematic analysis of the mutational effect on spike-angiotensin-converting enzyme-2 (ACE2) interactions and explored the structural/energy correlation of key mutations, utilizing a reliable coarse-grained model. Our study extended beyond the receptor-binding domain (RBD) of spike trimer through comprehensive modeling of the full-length spike trimer rather than just the RBD. Our free-energy calculation revealed that the enhanced binding affinity between the spike protein and the ACE2 receptor is correlated with the increased structural stability of the isolated spike protein, thus explaining the omicron variant's heightened transmissibility. The conclusion was supported by our experimental analyses involving the expression and purification of the full-length spike trimer. Furthermore, the energy decomposition analysis established those electrostatic interactions make major contributions to this effect. We categorized the mutations into four groups and established an analytical framework that can be employed in studying future mutations. Additionally, our calculations rationalized the reduced affinity of the omicron variant towards most available therapeutic neutralizing antibodies, when compared with the wild type. By providing concrete experimental data and offering a solid explanation, this study contributes to a better understanding of the relationship between theories and observations and lays the foundation for future investigations.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Mutación , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/virología , COVID-19/transmisión , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Simulación de Dinámica Molecular , Termodinámica , Modelos Moleculares
7.
J Am Chem Soc ; 146(7): 4665-4679, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38319142

RESUMEN

The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.


Asunto(s)
Canales de Cloruro , Cloruros , Humanos , Cloruros/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Mutación , Transducción de Señal , Calcio/metabolismo
8.
J Neurosci Res ; 102(3): e25307, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444265

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline. Sex differences in the progression of AD exist, but the neural mechanisms are not well understood. The purpose of the current study was to explore sex differences in brain functional connectivity (FC) at different stages of AD and their predictive ability on Montreal Cognitive Assessment (MoCA) scores using connectome-based predictive modeling (CPM). Resting-state functional magnetic resonance imaging was collected from 81 AD patients (44 females), 78 amnestic mild cognitive impairment patients (44 females), and 92 healthy controls (50 females). The FC analysis was conducted and the interaction effect between sex and group was investigated using two-factor variance analysis. The CPM was used to predict MoCA scores. There were sex-by-group interaction effects on FC between the left dorsolateral superior frontal gyrus and left middle temporal gyrus, left precuneus and right calcarine fissure surrounding cortex, left precuneus and left middle occipital gyrus, left middle temporal gyrus and left precentral gyrus, and between the left middle temporal gyrus and right cuneus. In the CPM, the positive network predictive model significantly predicted MoCA scores in both males and females. There were significant sex-by-group interaction effects on FC between the left precuneus and left middle occipital gyrus, and between the left middle temporal gyrus and right cuneus could predict MoCA scores in female patients. Our results suggest that there are sex differences in FC at different stages of AD. The sex-specific FC can further predict MoCA scores at individual level.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Enfermedades Neurodegenerativas , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Caracteres Sexuales , Lóbulo Temporal
9.
Appl Environ Microbiol ; 90(2): e0187123, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299814

RESUMEN

Dental caries is the most common chronic infectious disease around the world and disproportionately affects the marginalized socioeconomic group. Streptococcus mutans, considered a primary etiological agent of caries, depends on the coordinated physiological response to tolerate the oxidative stress generated by commensal species within dental plaque, which is a critical aspect of its pathogenicity. Here, we identified and characterized a novel tetracycline repressor family regulator, SMU_1361c, which appears to be acquired by the bacteria via horizontal gene transfer. Surprisingly, smu_1361c functions as a negative transcriptional regulator to regulate gene expression outside its operon and is involved in the oxidative stress response of S. mutans. The smu_1361c overexpression strain UA159/pDL278-1361c was more susceptible to oxidative stress and less competitive against hydrogen peroxide generated by commensal species Streptococcus gordonii and Streptococcus sanguinis. Transcriptomics analysis revealed that smu_1361c overexpression resulted in the significant downregulation of 22 genes, mainly belonging to three gene clusters responsible for the oxidative stress response. The conversed DNA binding motif of SMU_1361c was determined by electrophoretic mobility shift and DNase I footprinting assay with purified SMU_1361c protein; therefore, smu_1361c is directly involved in gene transcription related to the oxidative stress response. Crucially, our finding provides a new understanding of how S. mutans deals with the oxidative stress that is required for pathogenesis and will facilitate the development of new and improved therapeutic approaches for dental caries.IMPORTANCEStreptococcus mutans is the major organism associated with the development of dental caries, which globally is the most common chronic disease. To persist and survive in biofilms, S. mutans must compete with commensal species that occupy the same ecological niche. Here, we uncover a novel molecular mechanism of how tetracycline repressor family regulator smu_1361c is involved in the oxidative stress response through transcriptomics analysis, electrophoretic mobility shift assay, and DNase I footprinting assay. Furthermore, we demonstrated that smu_1361c mediates S. mutans sensitivity to oxidative stress and competitiveness with commensal streptococci. Therefore, this study has revealed a previously unknown regulation between smu_1361c and genes outside its operon and demonstrated the importance of smu_1361c in the oxidative stress response and the fitness of S. mutans within the plaque biofilms, which can be exploited as a new therapy to modulate ecological homeostasis and prevent dental caries.


Asunto(s)
Caries Dental , Streptococcus mutans , Humanos , Streptococcus mutans/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Estrés Oxidativo , Tetraciclinas , Desoxirribonucleasa I/metabolismo
10.
Plant Physiol ; 192(4): 2628-2639, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37148285

RESUMEN

Transcriptional regulation mediated by combinatorial interaction of transcription factors (TFs) is a key molecular mechanism modulating plant development and metabolism. Basic leucine zipper (bZIP) TFs play important roles in various plant developmental and physiological processes. However, their involvement in fatty acid biosynthesis is largely unknown. Arabidopsis (Arabidopsis thaliana) WRINKLED1 (WRI1) is a pivotal TF in regulation of plant oil biosynthesis and interacts with other positive and negative regulators. In this study, we identified two bZIP TFs, bZIP21 and bZIP52, as interacting partners of AtWRI1 by yeast-two-hybrid (Y2H)-based screening of an Arabidopsis TF library. We found that coexpression of bZIP52, but not bZIP21, with AtWRI1 reduced AtWRI1-mediated oil biosynthesis in Nicotiana benthamiana leaves. The AtWRI1-bZIP52 interaction was further verified by Y2H, in vitro pull-down, and bimolecular fluorescence complementation assays. Transgenic Arabidopsis plants overexpressing bZIP52 showed reduced seed oil accumulation, while the CRISPR/Cas9-edited bzip52 knockout mutant exhibited increased seed oil accumulation. Further analysis revealed that bZIP52 represses the transcriptional activity of AtWRI1 on the fatty acid biosynthetic gene promoters. Together, our findings suggest that bZIP52 represses fatty acid biosynthesis genes through interaction with AtWRI1, resulting in a reduction of oil production. Our work reports a previously uncharacterized regulatory mechanism that enables fine-tuning of seed oil biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
11.
Opt Lett ; 49(11): 2998-3001, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824312

RESUMEN

In this Letter, a delta-sigma modulation (DSM) encryption technique in a W-band RoF system is proposed. By performing DSM with different over-sample ratios (OSRs) on the OFDM signal based on the controlled keys generated by the chaotic system at the transmitter and performing constellation masking to disturb the transmitting signal for encryption, a high-order QAM-OFDM-DSM encrypted signal is achieved. In order to further improve the security of the system, bit bidirectional diffusion scrambling is used to resist chosen-plaintext attacks. After experimental verification, under the same transmission power, the encrypted DSM signal can achieve better security than single OSR of DSM signals through a 50-km standard single-mode fiber (SSMF) and a 3-m wireless channel, with the gain of sensitivity increased by ∼1 dBm. From the reliability of the system, the encrypted signal of the proposed scheme can be recovered, which meets a hard decision-forward error correction (HD-FEC) threshold of 3.8 × 10-3.

12.
Mol Reprod Dev ; 91(3): e23738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462735

RESUMEN

The parameters of sperm apoptosis and capacitation during liquid storage at 17°C can indicate the quality of pig sperm and the potential development of early embryos. However, the effect of kojic acid (KA) on semen preservation and its mechanism has not been fully understood. In this study, we discovered that adding KA to the diluent improved the antioxidant capacity of sperm mitochondria, maintained the normal structure of sperm mitochondria, and reduced sperm apoptosis. Western blot analysis revealed that KA prevented the release of Cytochrome c from mitochondria to the cytoplasm, reduced the expression of pro-apoptosis proteins cleaved Caspase-3 and cleaved Caspase-9, and increased the expression of the antiapoptosis protein Bcl-XL. Furthermore, KA also enhanced the motility parameters, oxidative phosphorylation level, adenosine triphosphate level, and protein tyrosine phosphorylation of capacitated sperm, while preserving the acrosome integrity and plasma membrane integrity of capacitated sperm. In conclusion, this study offers new insights into the molecular mechanism of how KA inhibits porcine sperm apoptosis and improves capacitated sperm parameters. Additionally, it suggests that KA can serve as an alternative to antibiotics.


Asunto(s)
Pironas , Preservación de Semen , Semen , Masculino , Porcinos , Animales , Motilidad Espermática , Espermatozoides/metabolismo , Apoptosis , Capacitación Espermática
13.
Clin Sci (Lond) ; 138(13): 797-815, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38840498

RESUMEN

IGFBP7 has been found to play an important role in inflammatory diseases, such as acute lung injury (ALI). However, the role of IGFBP7 in different stages of inflammation remains unclear. Transcriptome sequencing was used to identify the regulatory genes of IGFBP7, and endothelial IGFBP7 expression was knocked down using Aplnr-Dre mice to evaluate the endothelial proliferation capacity. The expression of proliferation-related genes was detected by Western blotting and RT-PCR assays. In the present study, we found that knockdown of IGFBP7 in endothelial cells significantly decreases the expression of endothelial cell proliferation-related genes and cell number in the recovery phase but not in the acute phase of ALI. Mechanistically, using bulk-RNA sequencing and CO-IP, we found that IGFBP7 promotes phosphorylation of FOS and subsequently up-regulates YAP1 molecules, thereby promoting endothelial cell proliferation. This study indicated that IGFBP7 has diverse roles in different stages of ALI, which extends the understanding of IGFBP7 in different stages of ALI and suggests that IGFBP7 as a potential therapeutic target in ALI needs to take into account the period specificity of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Proliferación Celular , Células Endoteliales , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal , Proteínas Señalizadoras YAP/metabolismo
14.
Inflamm Res ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844677

RESUMEN

BACKGROUND: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1ß and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.

15.
Fish Shellfish Immunol ; 144: 109281, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092093

RESUMEN

Given the uniquely close relationship between fish and aquatic environments, fish mucosal tissues are constantly exposed to a wide array of pathogenic microorganisms in the surrounding water. To maintain mucosal homeostasis, fish have evolved a distinct mucosal immune system known as mucosal-associated lymphoid tissues (MALTs). These MALTs consist of key effector cells and molecules from the adaptive immune system, such as B cells and immunoglobulins (Igs), which play crucial roles in maintaining mucosal homeostasis and defending against external pathogen infections. Until recently, three primary Ig isotypes, IgM, IgD, and IgT, have been identified in varying proportions within the mucosal secretions of teleost fish. Similar to the role of mucosal IgA in mammals and birds, teleost IgT plays a predominant role in mucosal immunity. Following the identification of the IgT gene in 2005, significant advances have been made in researching the origin, evolution, structure, and function of teleost IgT. Multiple IgT variants have been identified in various species of teleost fish, underscoring the remarkable complexity of IgT in fish. Therefore, this study provides a comprehensive review of the recent advances in various aspects of teleost IgT, including its genomic and structural features, the diverse distribution patterns within various fish mucosal tissues (the skin, gills, gut, nasal, buccal, pharyngeal, and swim bladder mucosa), its interaction with mucosal symbiotic microorganisms, and its immune responses towards diverse pathogens, including bacteria, viruses, and parasites. We also highlight the existing research gaps in the study of teleost IgT, suggesting the need for further investigation into the functional aspects of IgT and IgT+ B cells. This research is aimed at providing valuable insights into the immune functions of IgT and the mechanisms underlying the immune responses of fish against infections.


Asunto(s)
Enfermedades de los Peces , Inmunoglobulinas , Animales , Inmunoglobulinas/genética , Proteínas de Peces , Linfocitos B , Isotipos de Inmunoglobulinas , Peces , Inmunidad Mucosa , Mamíferos
16.
J Periodontal Res ; 59(2): 299-310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38014515

RESUMEN

BACKGROUND: Numerous studies have proposed that periodontitis is a potential risk factor for Alzheimer's disease. However, the association between periodontitis and brain normal cognition in aged and elderly individuals (NCs) is unclear. Such a link could provide clues to Alzheimer's disease development and strategies for early prevention. OBJECTIVE: To explore the associations between periodontal condition and metrics of both brain structure and function among NCs with the help of multimodal magnetic resonance imaging (MRI). METHODS: High-resolution T1-weighted structural data, resting-state functional-MRI data, and measures of periodontal condition were collected from 40 NCs. Cortical volume, thickness, and area as well as regional homogeneity were calculated with the aid of DPABISurf software. Correlation analyses were then conducted between each imaging metric and periodontal index. RESULTS: Consistent negative correlations were observed between severity of periodontitis (mild, moderate, severe) and cortical volume, area, and thickness, not only in brain regions that took charge of primary function but also in brain regions associated with advanced cognition behavior. Among participants with mild attachment loss (AL) and a shallow periodontal pocket depth (PPD), periodontal index was positively correlated with most measures of brain structure and function, while among participants with severe AL and deep PPD, periodontal index was negatively correlated with measures of brain structure and function (all p < .005 for each hemisphere). CONCLUSIONS: Our results demonstrate that periodontitis is associated with widespread changes in brain structure and function among middle-aged and elderly adults without signs of cognitive decline, which might be a potential risk factor for brain damage.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Periodontales , Periodontitis , Anciano , Adulto , Persona de Mediana Edad , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Periodontitis/complicaciones , Periodontitis/diagnóstico por imagen , Periodontitis/patología , Cognición , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedades Periodontales/patología
17.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 461-469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36913004

RESUMEN

Depressive symptoms and aggression are common in patients with substance use disorder. Drug craving is one of the main drivers of drug-seeking behavior. This study aimed to explore the relationship between drug craving and aggression in methamphetamine use disorder (MAUD) patients with and without depressive symptoms. Totally, 613 male patients with MAUD were recruited in this study. Patients with depressive symptoms were identified by the 13-item Beck Depression Inventory (BDI-13). Drug craving and aggression were assessed by the Desires for Drug Questionnaire (DDQ) and the Buss & Perry Aggression Questionnaire (BPAQ), respectively. 374 patients (61.01%) were confirmed to meet the criteria of depressive symptoms. Patients with depressive symptoms had significantly higher DDQ and BPAQ total scores than those without depressive symptoms. DDQ desire and intention were positively correlated with verbal aggression and hostility in patients with depressive symptoms, whereas they were correlated with self-directed aggression in patients without depressive symptoms. In patients with depressive symptoms, DDQ negative reinforcement and a history of suicide attempts were independently associated with BPAQ total score. Our study suggests that male MAUD patients have a high incidence of depressive symptoms and that patients with depressive symptoms may have greater drug cravings and aggression. Depressive symptoms may play a role in the association between drug craving and aggression in patients with MAUD.


Asunto(s)
Agresión , Metanfetamina , Humanos , Masculino , Depresión , Ansia , Metanfetamina/efectos adversos , China
18.
Artículo en Inglés | MEDLINE | ID: mdl-38530443

RESUMEN

Individuals with a history of childhood abuse (CA, including neglect and abuse by caregivers before the age of 18 years) have more severe substance dependence problems than those without a history of childhood abuse. However, whether a history of CA exacerbates craving and the mechanism of this effect remain largely unknown. The aim of this study was to explore the role of alexithymia in the effects of CA on craving in a large sample of methamphetamine-dependent individuals based on latent vulnerability theory. A total of 324 methamphetamine-dependent individuals who met DSM-5 criteria for substance use disorder were recruited. CA, alexithymia, and craving data were collected from the Childhood Trauma Questionnaire, the Toronto Alexithymia Scale-20, and the Obsessive Compulsive Drug Use Scale, respectively. t tests and ANCOVA were conducted to compare variables between the CA and non-CA groups, while partial correlation and mediation analyses were conducted to examine the potential mediating role of alexithymia in the relationship between CA and craving. Abused methamphetamine-dependent individuals reported higher levels of craving and higher levels of alexithymia than those of non-abused methamphetamine-dependent individuals. Alexithymia partially mediated the link between CA and craving, especially the effect of CA on craving frequency was fully mediated by alexithymia. Our findings reveal that a history of childhood abuse has a lasting effect on craving in stimulant-dependent individuals, and alexithymia contributes to some extent to the severity of substance abuse problems in abused methamphetamine-dependent individuals.

19.
BMC Psychiatry ; 24(1): 351, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730360

RESUMEN

BACKGROUND: Depressive symptoms are one of the most common psychiatric disorders, with a high lifetime prevalence rate among middle-aged and elderly Chinese. Obesity may be one of the risk factors for depressive symptoms, but there is currently no consensus on this view. Therefore, we investigate the relationship and predictive ability of 13 obesity- and lipid-related indices with depressive symptoms among middle-aged and elderly Chinese. METHODS: The data were obtained from The China Health and Retirement Longitudinal Study (CHARLS). Our analysis includes individuals who did not have depressive symptoms at the baseline of the CHARLS Wave 2011 study and were successfully follow-up in 2013 and 2015. Finally, 3790 participants were included in the short-term (from 2011 to 2013), and 3660 participants were included in the long-term (from 2011 to 2015). The average age of participants in short-term and long-term was 58.47 years and 57.88 years. The anthropometric indicators used in this analysis included non-invasive [e.g. waist circumference (WC), body mass index (BMI), and a body mass index (ABSI)], and invasive anthropometric indicators [e.g. lipid accumulation product (LAP), triglyceride glucose index (TyG index), and its-related indices (e.g. TyG-BMI, and TyG-WC)]. Receiver operating characteristic (ROC) analysis was used to examine the predictive ability of various indicators for depressive symptoms. The association of depressive symptoms with various indicators was calculated using binary logistic regression. RESULTS: The overall incidence of depressive symptoms was 20.79% in the short-term and 27.43% in the long-term. In males, WC [AUC = 0.452], LAP [AUC = 0.450], and TyG-WC [AUC = 0.451] were weak predictors of depressive symptoms during the short-term (P < 0.05). In females, BMI [AUC = 0.468], LAP [AUC = 0.468], and TyG index [AUC = 0.466] were weak predictors of depressive symptoms during the long-term (P < 0.05). However, ABSI cannot predict depressive symptoms in males and females during both periods (P > 0.05). CONCLUSION: The research indicates that in the middle-aged and elderly Chinese, most obesity- and lipid-related indices have statistical significance in predicting depressive symptoms, but the accuracy of these indicators in prediction is relatively low and may not be practical predictors.


Asunto(s)
Depresión , Obesidad , Humanos , Masculino , Femenino , Persona de Mediana Edad , China/epidemiología , Obesidad/epidemiología , Depresión/epidemiología , Depresión/sangre , Anciano , Estudios Longitudinales , Factores de Riesgo , Índice de Masa Corporal , Lípidos/sangre , Circunferencia de la Cintura , Pueblos del Este de Asia
20.
Biol Pharm Bull ; 47(5): 1043-1053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38811190

RESUMEN

Mogroside, the main component of Siraitia grosvenorii (Swingle) C. Jeffrey (Cucurbitaceae) is a natural product with hypoglycemic and intestinal microbiota regulating properties. However, whether the alteration of intestinal microbiota is associated with the antidiabetic effect of mogroside remains poorly understood. This study investigated the mechanism underlying the hypoglycemic effect of mogroside in regulating intestinal flora and attenuating metabolic endotoxemia. Kunming mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet and intraperitoneal injection of streptozotocin were randomly divided into model, pioglitazone (2.57 mg/kg) and mogroside (200, 100, and 50 mg/kg) groups. After 28 d of administration, molecular changes related to glucose metabolism and metabolic endotoxemia in mice were evaluated. The levels of insulin receptor substrate-1 (IRS-1), cluster of differentiation 14 (CD14) and toll-like receptor 4 (TLR4) mRNAs were measured, and the composition of intestinal microflora was determined by 16s ribosomal DNA (rDNA) sequencing. The results showed that mogroside treatment significantly improved hepatic glucose metabolism in T2DM mice. More importantly, mogroside treatment considerably reduced plasma endotoxin (inhibition rate 65.93%, high-dose group) and inflammatory factor levels, with a concomitant decrease in CD14 and TLR4 mRNA levels. Moreover, mogroside treatment reduced the relative abundance of Firmicutes and Proteobacteria (the inhibition rate of Proteobacteria was 85.17% in the low-dose group) and increased the relative abundance of Bacteroidetes (growth rate up to 40.57%, high-dose group) in the intestines of diabetic mice. This study reveals that mogroside can relieve T2DM, regulating intestinal flora and improving intestinal mucosal barrier, indicating that mogroside can be a potential therapeutic agent or intestinal microbiota regulator in the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglucemiantes , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/sangre , Ratones , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Glucemia/efectos de los fármacos , Triterpenos/farmacología , Triterpenos/uso terapéutico , Receptor Toll-Like 4/metabolismo , Endotoxemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA