Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35067718

RESUMEN

Adipogenesis is closely related to various metabolic diseases, such as obesity, type 2 diabetes, cardiovascular diseases and cancer. This cellular process is highly dependent on the expression and sequential activation of a diverse group of transcription factors. Here, we report that ADAR1 (also known as ADAR) could inhibit adipogenesis through binding with Dicer (also known as DICER1), resulting in enhanced production of miR-155-5p, which downregulates the adipogenic early transcription factor C/EBPß. Consequently, the expression levels of late-stage adipogenic transcription factors (C/EBPα and PPARγ) are reduced and adipogenesis is inhibited. More importantly, in vivo studies reveal that overexpression of ADAR1 suppresses white adipose tissue expansion in high fat diet-induced obese mice, leading to improved metabolic phenotypes, such as insulin sensitivity and glucose tolerance.


Asunto(s)
Adenosina Desaminasa , Adipogénesis , ARN Helicasas DEAD-box , MicroARNs , Obesidad , Ribonucleasa III , Células 3T3-L1 , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Adipogénesis/genética , Tejido Adiposo , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
2.
Molecules ; 29(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542859

RESUMEN

The interaction between nonmetal and metal atoms has attracted great interest in the development of organometallic compounds and their promising applications. In this study, we explored the interaction between boron and thorium atoms, based on the stable B40Th coordination compound, by employing density functional theory calculations. We elucidated the stability and geometries of the B40Th coordination compound and revealed the electron transfer from the metal atom Th to B40, which is evidenced by the natural bond orbital calculations. This electron transfer is attributed to the electron-withdrawing character of the boron atom and results in clear electrostatic interaction. Additionally, bond critical analysis and bond order calculations show obvious covalent characters between the metal and nonmetal atoms. The IR spectrum was simulated to give detailed information to identify this targeted compound in future experiments. This study is expected to enhance the understanding of metal-nonmetal interactions and provides useful information for constructing new organometallic compounds based on actinium metal atoms.

3.
J Physiol ; 600(9): 2089-2103, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35244217

RESUMEN

Regulation of intracellular pH (pHi ) in cardiomyocytes is crucial for cardiac function; however, currently known mechanisms for direct or indirect extrusion of acid from cardiomyocytes seem insufficient for energetically efficient extrusion of the massive H+ loads generated under in vivo conditions. In cardiomyocytes, voltage-sensitive H+ channel activity mediated by the HVCN1 proton channel would be a highly efficient means of disposing of H+ , while avoiding Na+ loading, as occurs during direct acid extrusion via Na+ /H+ exchange or indirect acid extrusion via Na+ -HCO3- cotransport. PCR and immunoblotting demonstrated expression of HVCN1 mRNA and protein in canine heart. Patch clamp analysis of canine ventricular myocytes revealed a voltage-gated H+ current that was highly H+ -selective. The current was blocked by external Zn2+ and the HVCN1 blocker 5-chloro-2-guanidinobenzimidazole. Both the gating and Zn2+ blockade of the current were strongly influenced by the pH gradient across the membrane. All characteristics of the observed current were consistent with the known hallmarks of HVCN1-mediated H+ current. Inhibition of HVCN1 and the NHE1 Na+ /H+ exchanger, singly and in combination, showed that either mechanism is largely sufficient to maintain pHi in beating cardiomyocytes, but that inhibition of both activities causes rapid acidification. These results show that HVCN1 is expressed in canine ventricular myocytes and provides a major H+ extrusion activity, with a capacity similar to that of NHE1. In the beating heart in vivo, this activity would allow Na+ -independent extrusion of H+ during each action potential and, when functionally coupled with anion transport mechanisms, could facilitate transport-mediated CO2 disposal. KEY POINTS: Intracellular pH (pHi ) regulation is crucial for cardiac function, as acidification depresses contractility and causes arrhythmias. H+ ions are generated in cardiomyocytes from metabolic processes and particularly from CO2 hydration, which has been shown to facilitate CO2 venting from mitochondria. Currently, the NHE1 Na+ /H+ exchanger is viewed as the dominant H+ extrusion mechanism in cardiac muscle. We show that the HVCN1 voltage-gated proton channel is present and functional in canine ventricular myocytes, and that HVCN1 and NHE1 both contribute to pHi regulation. HVCN1 provides an energetically efficient mechanism of H+ extrusion that would not cause Na+ loading, which can cause pathology, and that could contribute to transport-mediated CO2 disposal. These results provide a major advance in our understanding of pHi regulation in cardiac muscle.


Asunto(s)
Miocitos Cardíacos , Protones , Ácidos , Animales , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Perros , Concentración de Iones de Hidrógeno , Miocitos Cardíacos/fisiología , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
4.
J Immunol ; 205(6): 1633-1643, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32769121

RESUMEN

The inability to effectively control invading bacteria or other pathogens is a major cause of multiple organ dysfunction and death in sepsis. As the first-line defense of the immune system, macrophages play a crucial role in the removal of pathogens during sepsis. In this study, we define secreted and transmembrane 1A (Sectm1a) as a novel ligand of glucocorticoid-induced TNFR (GITR) that greatly boosts macrophage phagocytosis and bactericidal capacity. Using a global Sectm1a knockout (KO) mouse model, we observed that Sectm1a deficiency significantly suppressed phagocytosis and bactericidal activity in both recruited macrophages and tissue-resident macrophages, which consequently aggravated bacterial burden in the blood and multiple organs and further increased systemic inflammation, leading to multiple organ injury and increased mortality during polymicrobial sepsis. By contrast, treatment of septic mice with recombinant Sectm1a protein (rSectm1a) not only promoted macrophage phagocytosis and bactericidal activity but also significantly improved survival outcome. Mechanistically, we identified that Sectm1a could bind to GITR in the surface of macrophages and thereby activate its downstream PI3K-Akt pathway. Accordingly, rSectm1a-mediated phagocytosis and bacterial killing were abolished in macrophages by either KO of GITR or pharmacological inhibition of the PI3K-Akt pathway. In addition, rSectm1a-induced therapeutic effects on sepsis injury were negated in GITR KO mice. Taken together, these results uncover that Sectm1a may represent a novel target for drug development to control bacterial dissemination during sepsis or other infectious diseases.


Asunto(s)
Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Macrófagos/fisiología , Proteínas de la Membrana/metabolismo , Insuficiencia Multiorgánica/inmunología , Sepsis/inmunología , Animales , Proteína Relacionada con TNFR Inducida por Glucocorticoide/genética , Humanos , Tolerancia Inmunológica , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Oncogénica v-akt/metabolismo , Fagocitosis , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
5.
Mol Ther ; 29(3): 1294-1311, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279722

RESUMEN

Tissue-resident macrophages (TRMs) are sentinel cells for maintaining tissue homeostasis and organ function. In this study, we discovered that lipopolysaccharide (LPS) administration dramatically reduced TRM populations and suppressed their self-renewal capacities in multiple organs. Using loss- and gain-of-function approaches, we define Sectm1a as a novel regulator of TRM self-renewal. Specifically, at the earlier stage of endotoxemia, Sectm1a deficiency exaggerated acute inflammation-induced reduction of TRM numbers in multiple organs by suppressing their proliferation, which was associated with more infiltrations of inflammatory monocytes/neutrophils and more serious organ damage. By contrast, administration of recombinant Sectm1a enhanced TRM populations and improved animal survival upon endotoxin challenge. Mechanistically, we identified that Sectm1a-induced upregulation in the self-renewal capacity of TRM is dependent on GITR-activated T helper cell expansion and cytokine production. Meanwhile, we found that TRMs may play an important role in protecting local vascular integrity during endotoxemia. Our study demonstrates that Sectm1a contributes to stabling TRM populations through maintaining their self-renewal capacities, which benefits the host immune response to acute inflammation. Therefore, Sectm1a may serve as a new therapeutic agent for the treatment of inflammatory diseases.


Asunto(s)
Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Memoria Inmunológica/inmunología , Inflamación/complicaciones , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Monocitos/inmunología , Insuficiencia Multiorgánica/prevención & control , Animales , Proteína Relacionada con TNFR Inducida por Glucocorticoide/genética , Homeostasis , Proteínas de la Membrana/genética , Ratones , Insuficiencia Multiorgánica/etiología , Linfocitos T Colaboradores-Inductores/inmunología
6.
J Nanobiotechnology ; 20(1): 247, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642064

RESUMEN

Exosomes are nanoscale monolayer membrane vesicles that are actively endogenously secreted by mammalian cells. Currently, multifunctional exosomes with tumor-targeted imaging and therapeutic potential have aroused widespread interest in cancer research. Herein, we developed a multifunctional HEK-293T exosome-based targeted delivery platform by engineering HEK-293T cells to express a well-characterized exosomal membrane protein (Lamp2b) fused to the αv integrin-specific iRGD peptide and tyrosine fragments. This platform was loaded with doxorubicin (Dox) and labeled with radioiodine-131 (131I) using the chloramine-T method. iRGD exosomes showed highly efficient targeting and Dox delivery to integrin αvß3-positive anaplastic thyroid carcinoma (ATC) cells as demonstrated by confocal imaging and flow cytometry in vitro and an excellent tumor-targeting capacity confirmed by single-photon emission computed tomography-computed tomography after labeling with 131I in vivo. In addition, intravenous injection of this vehicle delivered Dox and 131I specifically to tumor tissues, leading to significant tumor growth inhibition in an 8505C xenograft mouse model, while showing biosafety and no side effects. These as-developed multifunctional exosomes (denoted as Dox@iRGD-Exos-131I) provide novel insight into the current treatment of ATC and hold great potential for improving therapeutic efficacy against a wide range of integrin αvß3-overexpressing tumors.


Asunto(s)
Exosomas , Neoplasias , Animales , Doxorrubicina , Exosomas/metabolismo , Células HEK293 , Humanos , Integrina alfaVbeta3/metabolismo , Radioisótopos de Yodo/análisis , Radioisótopos de Yodo/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia
7.
J Biol Chem ; 294(27): 10438-10448, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118273

RESUMEN

The initiation and development of diabetes are mainly ascribed to the loss of functional ß-cells. Therapies designed to regenerate ß-cells provide great potential for controlling glucose levels and thereby preventing the devastating complications associated with diabetes. This requires detailed knowledge of the molecular events and underlying mechanisms in this disorder. Here, we report that expression of microRNA-223 (miR-223) is up-regulated in islets from diabetic mice and humans, as well as in murine Min6 ß-cells exposed to tumor necrosis factor α (TNFα) or high glucose. Interestingly, miR-223 knockout (KO) mice exhibit impaired glucose tolerance and insulin resistance. Further analysis reveals that miR-223 deficiency dramatically suppresses ß-cell proliferation and insulin secretion. Mechanistically, using luciferase reporter gene assays, histological analysis, and immunoblotting, we demonstrate that miR-223 inhibits both forkhead box O1 (FOXO1) and SRY-box 6 (SOX6) signaling, a unique bipartite mechanism that modulates expression of several ß-cell markers (pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), and urocortin 3 (UCN3)) and cell cycle-related genes (cyclin D1, cyclin E1, and cyclin-dependent kinase inhibitor P27 (P27)). Importantly, miR-223 overexpression in ß-cells could promote ß-cell proliferation and improve ß-cell function. Taken together, our results suggest that miR-223 is a critical factor for maintaining functional ß-cell mass and adaptation during metabolic stress.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , MicroARNs/metabolismo , Factores de Transcripción SOXD/metabolismo , Regiones no Traducidas 3' , Animales , Línea Celular , Proliferación Celular , Ciclina D1/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Proteína Forkhead Box O1/química , Proteína Forkhead Box O1/genética , Prueba de Tolerancia a la Glucosa , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Ratas , Factores de Transcripción SOXD/química , Factores de Transcripción SOXD/genética , Transducción de Señal , Transactivadores/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos
8.
J Biol Chem ; 294(48): 18057-18068, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31619520

RESUMEN

Cardiac mitochondrial damage and subsequent inflammation are hallmarks of endotoxin-induced myocardial depression. Activation of the Parkin/PTEN-induced kinase 1 (PINK1) pathway has been shown to promote autophagy of damaged mitochondria (mitophagy) and to protect from endotoxin-induced cardiac dysfunction. Tumor susceptibility gene 101 (TSG101) is a key member of the endosomal recycling complexes required for transport, which may affect autophagic flux. In this study, we investigated whether TSG101 regulates mitophagy and influences the outcomes of endotoxin-induced myocardial dysfunction. TSG101 transgenic and knockdown mice underwent endotoxin/lipopolysaccharide treatment (10 µg/g) and were assessed for survival, cardiac function, systemic/local inflammation, and activity of mitophagy mediators in the heart. Upon endotoxin challenge and compared with WT mice, TSG101 transgenic mice exhibited increased survival, preserved cardiac contractile function, reduced inflammation, and enhanced mitophagy activation in the heart. By contrast, TSG101 knockdown mice displayed opposite phenotypes during endotoxemia. Mechanistically, both coimmunoprecipitation assays and coimmunofluorescence staining revealed that TSG101 directly binds to Parkin in the cytosol of myocytes and facilitates translocation of Parkin from the cytosol to the mitochondria. Our results indicate that TSG101 elevation could protect against endotoxin-triggered myocardial injury by promoting Parkin-induced mitophagy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cardiopatías/metabolismo , Lipopolisacáridos/toxicidad , Mitocondrias Cardíacas/metabolismo , Mitofagia/efectos de los fármacos , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Cardiopatías/inducido químicamente , Cardiopatías/genética , Cardiopatías/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Mitofagia/genética , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
9.
FASEB J ; 33(6): 7451-7466, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884248

RESUMEN

Development of physiologic cardiac hypertrophy has primarily been ascribed to the IGF-1 and its receptor, IGF-1 receptor (IGF-1R), and subsequent activation of the protein kinase B (Akt) pathway. However, regulation of endosome-mediated recycling and degradation of IGF-1R during physiologic hypertrophy has not been investigated. In a physiologic hypertrophy model of treadmill-exercised mice, we observed that levels of tumor susceptibility gene 101 (Tsg101), a key member of the endosomal sorting complex required for transport, were dramatically elevated in the heart compared with sedentary controls. To determine the role of Tsg101 on physiologic hypertrophy, we generated a transgenic (TG) mouse model with cardiac-specific overexpression of Tsg101. These TG mice exhibited a physiologic-like cardiac hypertrophy phenotype at 8 wk evidenced by: 1) the absence of cardiac fibrosis, 2) significant improvement of cardiac function, and 3) increased total and plasma membrane levels of IGF-1R and increased phosphorylation of Akt. Mechanistically, we identified that Tsg101 interacted with family-interacting protein 3 (FIP3) and IGF-1R, thereby stabilizing FIP3 and enhancing recycling of IGF-1R. In vitro, adenovirus-mediated overexpression of Tsg101 in neonatal rat cardiomyocytes resulted in cell hypertrophy, which was blocked by addition of monensin, an inhibitor of endosome-mediated recycling, and by small interfering RNA-mediated knockdown (KD) of FIP3. Furthermore, cardiac-specific KD of Tsg101 showed a significant reduction in levels of endosomal recycling compartment members (Rab11a and FIP3), IGF-1R, and Akt phosphorylation. Most interestingly, Tsg101-KD mice failed to develop cardiac hypertrophy after intense treadmill training. Taken together, our data identify Tsg101 as a novel positive regulator of physiologic cardiac hypertrophy through facilitating the FIP3-mediated endosomal recycling of IGF-1R.-Essandoh, K., Deng, S., Wang, X., Jiang, M., Mu, X., Peng, J., Li, Y., Peng, T., Wagner, K.-U., Rubinstein, J., Fan, G.-C. Tsg101 positively regulates physiologic-like cardiac hypertrophy through FIP3-mediated endosomal recycling of IGF-1R.


Asunto(s)
Cardiomegalia/fisiopatología , Proteínas de Unión al ADN/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Endosomas/metabolismo , Quinasa I-kappa B/fisiología , Receptor IGF Tipo 1/metabolismo , Factores de Transcripción/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratas
10.
J Chem Phys ; 150(14): 144311, 2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-30981265

RESUMEN

The fragmentation of two isomers of C3H4, propyne (CH3CCH) and allene (CH2CCH2), is investigated by 50 keV/u Ne8+ impact. Obvious isomer effects are observed by comparing the time-of-flight spectra generated from the two isomers. Six two-body fragmentation channels of C3H4 2+ dications are identified for each isomer. CH2 + + C2H2 + is found to be the most favored CC bond breaking channel for both isomers, indicating that CH3CCH2+ intends to rearrange to the structure containing the CH2 group before fragmentation. For CH bond breaking channels, it is found that the CH3CCH which contains a CH3 group is more efficient for H2 + and H3 + ejection. In addition, two-body dissociation channels of C3H4 3+ trications are identified. While the H+ + C3H3 2+ channel is observed in the fragmentation of both isomers, the H2 + + C3H2 2+ channel only occurs in the fragmentation of CH3CCH3+. For CH2CCH2 3+, the peak and shoulder structures in the kinetic energy release spectrum of the H+ + C3H3 2+ channel are attributed to different geometries of the C3H3 2+ product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA