Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Am Chem Soc ; 146(22): 15428-15437, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795044

RESUMEN

Chemical recycling to monomers (CRM) offers a promising closed-loop approach to transition from current linear plastic economy toward a more sustainable circular paradigm. Typically, this approach has focused on modulating the ceiling temperature (Tc) of monomers. Despite considerable advancements, polymers with low Tc often face challenges such as inadequate thermal stability, exemplified by poly(γ-butyrolactone) (PGBL) with a decomposition temperature of ∼200 °C. In contrast, floor temperature (Tf)-regulated polymers, particularly those synthesized via the ring-opening polymerization (ROP) of macrolactones, inherently exhibit enhanced thermodynamic stability as the temperature increases. However, the development of those Tf regulated chemically recyclable polymers remains relatively underexplored. In this context, by judicious design and efficient synthesis of a biobased macrocyclic diester monomer (HOD), we developed a type of Tf -regulated closed-loop chemically recyclable poly(ketal-ester) (PHOD). First, the entropy-driven ROP of HOD generated high-molar mass PHOD with exceptional thermal stability with a Td,5% reaching up to 353 °C. Notably, it maintains a high Td,5% of 345 °C even without removing the polymerization catalyst. This contrasts markedly with PGBL, which spontaneously depolymerizes back to the monomer above its Tc in the presence of catalyst. Second, PHOD displays outstanding closed-loop chemical recyclability at room temperature within just 1 min with tBuOK. Finally, copolymerization of pentadecanolide (PDL) with HOD generated high-performance copolymers (PHOD-co-PPDL) with tunable mechanical properties and chemical recyclability of both components.

2.
Anesthesiology ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186677

RESUMEN

BACKGROUND: Acute liver injury (ALI) is a disease characterized by severe liver dysfunction, caused by significant infiltration of immune cells and extensive cell death with a high mortality. Previous studies demonstrated that the α7 nicotinic acetylcholine receptor (α7nAChR) played a crucial role in various liver diseases. The hypothesis of this study was that activating α7nAChR could alleviate ALI and investigate its possible mechanisms. METHODS: ALI was induced by intraperitoneal injection of lipopolysaccharide (LPS)/D-galactosamine (D-Gal) in wild type (WT), α7nAChR knockout (α7nAChR -/-) and Sting mutation (Stinggt/gt) mice in the presence or absence of a pharmacological selective α7nAChR agonist (PNU-282987). The effects of α7nAChR on hepatic injury, inflammatory response, mitochondrial damage, necroptosis and infiltration of immune cells during ALI were assessed. RESULTS: The expression of α7nAChR in liver tissue was increased in LPS/D-Gal induced ALI mice. Compared to the age-matched WT mice, α7nAChR deficiency decreased the survival rate, exacerbated the hepatic injury accompanied with enhanced inflammatory response and oxidative stress, and aggravated hepatic mitochondrial damage and necroptosis. Conversely, pharmacological activation of α7nAChR by PNU-282987 displayed the opposite trends. Furthermore, PNU-282987 significantly reduced the proportion of infiltrating monocyte-derived macrophages (CD45+CD11bhiF4/80int), M1 macrophages (CD45+CD11b+F4/80+CD86 hiCD163low), Ly6Chi monocytes (CD45+CD11b+MHCⅡ lowLy6C hi), but increased the resident Kupffer cells (CD45+CD11bintF4/80 hiTIM4 hi) in the damaged hepatic tissues caused by LPS/D-Gal. Interestingly, α7nAChR deficiency promoted the STING signaling pathway under LPS/D-Gal stimulation, while PNU-282987 treatment significantly prevented its activation. Finally, it was found that Sting mutation abolished the protective effects against hepatic injury by activating α7nAChR. CONCLUSIONS: Our study revealed that activating α7nAChR could protect against LPS/D-Gal induced ALI by inhibiting hepatic inflammation and necroptosis possibly via regulating immune cells infiltration and inhibiting STING signaling pathway.

3.
Nano Lett ; 23(9): 3904-3912, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37043295

RESUMEN

Transcytosis-based active transport of cancer nanomedicine has shown great promise for enhancing its tumor extravasation and infiltration and antitumor activity, but how the key nanoproperties of nanomedicine, particularly particle size, influence the transcytosis remains unknown. Herein, we used a transcytosis-inducing polymer, poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA), and fabricated stable OPDEA-based micelles with different sizes (30, 70, and 140 nm in diameter) from its amphiphilic block copolymer, OPDEA-block-polystyrene (OPDEA-PS). The study of the micelle size effects on cell transcytosis, tumor extravasation, and infiltration showed that the smallest micelles (30 nm) had the fastest transcytosis and, thus, the most efficient tumor extravasation and infiltration. So, the 7-ethyl-10-hydroxyl camptothecin (SN38)-conjugated OPDEA micelles of 30 nm had much enhanced antitumor activity compared with the 140 nm micelles. These results are instructive for the design of active cancer nanomedicine.


Asunto(s)
Camptotecina , Micelas , Línea Celular Tumoral , Camptotecina/farmacología , Polímeros , Transcitosis , Resultado del Tratamiento , Tamaño de la Partícula
4.
Angew Chem Int Ed Engl ; 63(22): e202404179, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488293

RESUMEN

Chemical recycling of polymers to monomers presents a promising solution to the escalating crisis associated with plastic waste. Despite considerable progress made in this field, the primary efforts have been focused on redesigning new monomers to produce readily recyclable polymers. In contrast, limited research into the potential of seemingly "non-polymerizable" monomers has been conducted. Herein, we propose a paradigm that leverages a "chaperone"-assisted strategy to establish closed-loop circularity for a "non-polymerizable" α, ß-conjugated lactone, 5,6-dihydro-2H-pyran-2-one (DPO). The resulting PDPO, a structural analogue of poly(δ-valerolactone) (PVL), exhibits enhanced thermal properties with a melting point (Tm) of 114 °C and a decomposition temperature (Td,5%) of 305 °C. Notably, owing to the structural similarity between DPO and δ-VL, the copolymerization generates semi-crystalline P(DPO-co-VL)s irrespective of the DPO incorporation ratio. Intriguingly, the inherent C=C bonds in P(DPO-co-VL)s enable their convenient post-functionalization via Michael-addition reaction. Lastly, PDPO was demonstrated to be chemically recyclable via ring-closing metathesis (RCM), representing a significant step towards the pursuit of enabling the closed-loop circularity of "non-polymerizable" lactones without altering the ultimate polymer structure.

5.
Macromol Rapid Commun ; 44(6): e2200888, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36583944

RESUMEN

Polymer dielectrics with high energy density are of urgent demand in electric and electronic devices, but the tradeoff between dielectric constant and breakdown strength is still unsolved. Herein, the synthesis and molar mass control of three alternating [1.1.1]propellane-(meth)acrylate copolymers, denoted as P-MA, P-MMA, and P-EA, respectively, are reported. These copolymers exhibit high thermal stability and are semi-crystalline with varied glass transition temperatures and melting temperatures. The rigid bicyclo[1.1.1]pentane units in the polymer backbone promote the orientational polarization of the polar ester groups, thus enhancing the dielectric constants of these polymers, which are 4.50 for P-EA, 4.55 for P-MA, and 5.11 for P-MMA at 10 Hz and room temperature, respectively. Moreover, the high breakdown strength is ensured by the non-conjugated nature of bicyclo[1.1.1]pentane unit. As a result, these copolymers show extraordinary energy storage performance; P-MA exhibits a discharge energy density of 9.73 J cm-3 at 750 MV m-1 and ambient temperature. This work provides a new type of promising candidates as polymer dielectrics for film capacitors, and offers an efficient strategy to improve the dielectric and energy storage properties by introducing rigid non-conjugated bicyclo[1.1.1]pentane unit into the polymer backbone.


Asunto(s)
Metanfetamina , Pentanos , Acrilatos , Polímeros
6.
Eur Heart J ; 43(43): 4579-4595, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35929617

RESUMEN

AIMS: Exercise confers protection against cardiovascular ageing, but the mechanisms remain largely unknown. This study sought to investigate the role of fibronectin type-III domain-containing protein 5 (FNDC5)/irisin, an exercise-associated hormone, in vascular ageing. Moreover, the existence of FNDC5/irisin in circulating extracellular vesicles (EVs) and their biological functions was explored. METHODS AND RESULTS: FNDC5/irisin was reduced in natural ageing, senescence, and angiotensin II (Ang II)-treated conditions. The deletion of FNDC5 shortened lifespan in mice. Additionally, FNDC5 deficiency aggravated vascular stiffness, senescence, oxidative stress, inflammation, and endothelial dysfunction in 24-month-old naturally aged and Ang II-treated mice. Conversely, treatment of recombinant irisin alleviated Ang II-induced vascular stiffness and senescence in mice and vascular smooth muscle cells. FNDC5 was triggered by exercise, while FNDC5 knockout abrogated exercise-induced protection against Ang II-induced vascular stiffness and senescence. Intriguingly, FNDC5 was detected in human and mouse blood-derived EVs, and exercise-induced FNDC5/irisin-enriched EVs showed potent anti-stiffness and anti-senescence effects in vivo and in vitro. Adeno-associated virus-mediated rescue of FNDC5 specifically in muscle but not liver in FNDC5 knockout mice, promoted the release of FNDC5/irisin-enriched EVs into circulation in response to exercise, which ameliorated vascular stiffness, senescence, and inflammation. Mechanistically, irisin activated DnaJb3/Hsp40 chaperone system to stabilize SIRT6 protein in an Hsp70-dependent manner. Finally, plasma irisin concentrations were positively associated with exercise time but negatively associated with arterial stiffness in a proof-of-concept human study. CONCLUSION: FNDC5/irisin-enriched EVs contribute to exercise-induced protection against vascular ageing. These findings indicate that the exerkine FNDC5/irisin may be a potential target for ageing-related vascular comorbidities.


Asunto(s)
Vesículas Extracelulares , Sirtuinas , Humanos , Ratones , Animales , Anciano , Preescolar , Fibronectinas/metabolismo , Factores de Transcripción/metabolismo , Ratones Noqueados , Envejecimiento , Angiotensina II/farmacología , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo
7.
Biomacromolecules ; 23(12): 5213-5224, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36382861

RESUMEN

Poly(α-methylene ester)s are an attractive type of functional aliphatic polyesters that represent a platform for the fabrication of various biodegradable and biomedical polymers. Herein, we report the controlled ring-opening polymerization (ROP) of a seven-membered α-methylene lactone (3-methylene-1,5-dioxepan-2-one, MDXO) that was synthesized based on the Baylis-Hillman reaction. The chemoselective ROP of MDXO was catalyzed by diphenyl phosphate (DPP) at 60 °C or stannous octoate (Sn(Oct)2) at 130 °C, generating α-methylene-containing polyester (PMDXO) with a linear structure and easily tunable molar mass. The ring-opening copolymerization of MDXO with ε-caprolactone or 1,5-dioxepan-2-one was also performed under the catalysis of DPP or Sn(Oct)2 to afford copolymers with different compositions and sequence structures that are influenced by the kinds of monomers and catalysts. PMDXO is a slowly crystallizable polymer with a glass transition temperature of ca. -33 °C, and its melting temperature and enthalpy are significantly influenced by the thermal history. The thermal properties of the copolymers are dependent on their composition and sequence structure. Finally, the post-modification of PMDXO based on the thiol-Michael addition reaction was briefly explored using triethylamine as a catalyst. Given the optimized condition, PMDXO could be dually modified to afford biodegradable polyesters with different functionalities.


Asunto(s)
Materiales Biocompatibles , Ésteres , Materiales Biocompatibles/química , Poliésteres/química , Polímeros/química
8.
Macromol Rapid Commun ; 42(18): e2100169, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34028933

RESUMEN

Self-immolative polymers are a special kind of degradable polymers that depolymerize into small molecules through a cascade of reactions upon stimuli-triggered cleavage of the polymer chain ends. This work reports the design and synthesis of a fluoride-triggered self-immolative polyester. A 2,4-disubstitued 4-hydroxy butyrate is first confirmed to quickly cyclize in solution to form a γ-butyrolactone derivative. Then, the Passerini three component reaction (P-3CR) of an AB dimer (A: aldehyde, B: carboxylic acid) with tert-butyl isocyanide or oligo(ethylene glycol) isocyanide affords two poly(2,4-disubstitued 4-hydroxybutyrate) derivatives (P2 and P3). Two silyl ether end-capped polymers (P4 and P5) are abtained from P2 and P3, and their degradation in solution is examined by NMR spectrum and size exclusion chromatography. Polymers P4 and P5 are stable in the absence of tetrabutylammonium fluoride (TBAF), while in the presence of TBAF, the molar masses of P4 and P5 gradually decrease with time together with the increase of the amount of formed 2,4-disubstitued γ-butyrolactone. The depolymerization mechanism is proposed. The first step is the fast removal of the silyl ether by fluoride. Then, the released hydroxyl group initiates the quick head-to-tail depolymerization of the polyester via intramolecular cyclization.


Asunto(s)
Fluoruros , Polímeros , Hidroxibutiratos , Poliésteres
9.
Angew Chem Int Ed Engl ; 60(36): 19750-19758, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34046980

RESUMEN

The emerging strategies of accelerating the cleavage reaction in tumors through locally enriching the reactants is promising. Yet, the applications are limited due to the lack of the tumor-selectivity for most of the reactants. Here we explored an alternative approach to leverage the rate constant by locally inducing an in vivo catalyst. We found that the desilylation-induced cleavage chemistry could be catalyzed in vivo by cationic micelles, and accelerated over 1400-fold under physiological condition. This micelle-catalyzed controlled release platform is demonstrated by the release of a 6-hydroxyl-quinoline-2-benzothiazole derivative (HQB) in two cancer cell lines and a NIR dye in mouse tumor xenografts. Through intravenous injection of a pH-sensitive polymer micelles, we successfully applied this strategy to a prodrug activation of hydroxyl camptothecin (OH-CPT) in tumors. Its "decaging" efficiency is 42-fold to that without cationic micelles-mediated catalysis. This micelle-catalyzed desilylation strategy unveils the potential that micelle may act beyond a carrier but a catalyst for local perturbing or activation.


Asunto(s)
Antineoplásicos/farmacología , Benzotiazoles/química , Animales , Antineoplásicos/química , Catálisis , Cationes/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Micelas , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología
10.
Biomacromolecules ; 20(7): 2809-2820, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31185717

RESUMEN

Transient increase of reactive oxygen species (ROS) is vital for some physiological processes, whereas the chronic and sustained high ROS level is usually implicated in the inflammatory diseases and cancers. Herein, we report the innovative redox-responsive theranostic micellar nanoparticles that are able to load anticancer drugs through coordination and hydrophobic interaction and to fluorescently monitor the intracellular redox status. The nanoparticles were formed by the amphiphilic block copolymers composed of a PEG segment and a selenide-containing hydrophobic polycarbonate block with a small fraction of coumarin-based chromophore. Under the alternative redox stimulation that might be encountered in the physiological process of some healthy cells, these nanoparticles underwent the reversible changes in size, morphology, and fluorescence intensity. With the assistance of small model compounds, we clarified the chemistry behind these changes, that is, the redox triggered reversible transformation between selenide and selenoxide. Upon the monotonic oxidation similar to the sustained high ROS level of cancer cells, the nanoparticles could be disrupted completely, which was accompanied by the drastic decrease in fluorescence. Cisplatin and paclitaxel were simultaneously coloaded in the nanoparticles with a moderate efficacy, and the coordination between selenide and platinum improved the stability of the drug-loaded nanoparticles against dilution. The naked nanoparticles are cytocompatible, whereas the dual drug-loaded nanoparticles exhibited a concentration dependent and synergistic cytotoxicity to triple-negative breast cancer (TNBC) cells. Of importance, the drug-loaded nanoparticles are much more toxic to TNBC cells than to normal cells due in part to ROS overproduction in the former cell lines.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Liberación de Fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Micelas , Oxidación-Reducción , Paclitaxel/química , Paclitaxel/farmacología , Cemento de Policarboxilato/química , Cemento de Policarboxilato/farmacología , Especies Reactivas de Oxígeno/química , Neoplasias de la Mama Triple Negativas/patología
11.
Biomacromolecules ; 19(6): 2182-2193, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29669209

RESUMEN

Reactive oxygen species (ROS)-responsive polymers have attracted attention for their potential in photodynamic therapy. Herein, we report the ROS-responsive aliphatic polycarbonates prepared by the ring-opening polymerization (ROP) of three six-membered cyclic carbonate monomers with ethyl selenide, phenyl selenide or ethyl telluride groups. Under catalysis of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), all three monomers underwent the controlled anionic ROP, showing a feature of equilibrium polymerization due to the bulky effect of 5,5-disubstituents. With PEG macroinitiator, three series amphiphilic block copolymers were prepared. They could form spherical nanoparticles of ∼100 nm, which were stable in neutral phosphate buffer but dissociated rapidly under triggering of H2O2. We studied the H2O2-induced oxidation profiles of selenide- or telluride-containing small molecules by 1H NMR and revealed the factors that affect the oxidation kinetics and products. On this basis, the oxidative degradation mechanism of the copolymer nanoparticles has been clarified. Under the same oxidative condition, the telluride-containing nanoparticle degraded with the fastest rate while the phenyl selenide-based one degraded most slowly. These ROS-responsive nanoparticles could load photosensitizer chlorin e6 (Ce6) and anticancer drug doxorubicin (DOX). Under red light irradiation, Ce6-sensitized production of 1O2 that triggered the degradation of nanoparticles, resulting in an accelerated payload release. In vitro cytotoxicity assays demonstrate that the nanoparticles coloaded with DOX and Ce6 exhibited a synergistic cell-killing effect to MCF-7 cells, representing a novel responsive nanoplatform for PDT and/or chemotherapy.


Asunto(s)
Peróxido de Hidrógeno , Nanopartículas , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Cemento de Policarboxilato , Clorofilidas , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacocinética , Peróxido de Hidrógeno/farmacología , Células MCF-7 , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias/metabolismo , Neoplasias/patología , Cemento de Policarboxilato/química , Cemento de Policarboxilato/farmacocinética , Cemento de Policarboxilato/farmacología , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacología
12.
Org Biomol Chem ; 15(39): 8384-8392, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28948264

RESUMEN

Maleamic acid derivatives as weakly acid-sensitive linkers or caging groups have been used widely in smart delivery systems. Here we report on the controlled synthetic methods to mono- and dialkyl substituted maleamic acids and their pH-dependent hydrolysis behaviors. Firstly, we studied the reaction between n-butylamine and citraconic anhydride, and found that the ratio of the two n-butyl citraconamic acid isomers (α and ß) could be finely tuned by controlling the reaction temperature and time. Secondly, we investigated the effects of solvent, basic catalyst, and temperature on the reaction of n-butylamine with 2,3-dimethylmaleic anhydride, and optimized the reaction conditions to efficiently synthesize the dimethylmaleamic acids. Finally, we compared the pH-dependent hydrolysis profiles of four OEG-NH2 derived water-soluble maleamic acid derivatives. The results reveal that the number, structure, and position of the substituents on the cis-double bond exhibit a significant effect on the pH-related hydrolysis kinetics and selectivity of the maleamic acid derivatives. Interestingly, for the mono-substituted citraconamic acids (α-/ß-isomer), we found that their hydrolyses are accompanied by the isomerization between the two isomers.


Asunto(s)
Maleatos/química , Maleatos/síntesis química , Alquilación , Técnicas de Química Sintética , Concentración de Iones de Hidrógeno , Hidrólisis , Isomerismo , Cinética
13.
Macromol Rapid Commun ; 38(20)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28837743

RESUMEN

Oxidation-responsive aliphatic polycarbonates represent a promising branch of functional biodegradable polymers. This paper reports the synthesis and ring-opening polymerization (ROP) of an eight-membered cyclic carbonate possessing phenylboronic pinacol ester (C3) and the H2 O2 -triggered degradation of its polymer (PC3). C3 is prepared from the inexpensive and readily available diethanolamine with a moderate yield and undergoes the well-controlled anionic ROP with a living character under catalysis of 1,8-diazabicyclo[5.4.0]undec-7-ene. It can also be copolymerized with l-lactide, trimethylene carbonate, and 5-ter-butyloxycarbonylamino trimethylene carbonate, affording the copolymers with a varied distribution of the repeating units. To clearly demonstrate the oxidative degradation mechanism of PC3, this paper first investigates the H2 O2 -induced decomposition of small-molecule model compounds by proton nuclear magnetic resonance (1 H NMR). It is found that the adduct products formed by the in-situ-generated secondary amines and p-quinone methide (QM) are thermodynamically unstable and can decompose slowly back to QM and the amines. On this basis, this paper further studies the H2 O2 -accelerated degradation of PC3 nanoparticles that are prepared by the o/w emulsion method. A sequential process of oxidation of the phenylboronic ester, 1,6-elimination of the in-situ-generated phenol, releasing CO2 and intramolecular cyclization or isomerization is proposed as the degradation mechanism of PC3.


Asunto(s)
Carbonatos/química , Cemento de Policarboxilato/química , Aminas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Carbonatos/síntesis química , Catálisis , Ciclización , Peróxido de Hidrógeno/química , Indolquinonas/química , Nitrógeno/química , Oxidación-Reducción , Polimerizacion , Espectroscopía de Protones por Resonancia Magnética
14.
Yi Chuan ; 39(7): 568-575, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28757471

RESUMEN

How the organ size is determined is a fundamental question in developmental biology. The metazoan Hippo signaling pathway is well established to negatively regulate organ sizes. Recent studies in plants have started to shape an emerging Hippo signaling pathway. In this review, we summarize the studies in the past decade on the two known components of plant Hippo signaling pathway, the Ste20/Hippo homolog SIK1, and the MOB1/Mats homolog MOB1, with a focus on their developmental functions. Then we envision future discoveries that may shape a complete Hippo signaling pathway in plants.


Asunto(s)
Proteínas de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Tamaño de los Órganos
15.
Macromol Rapid Commun ; 36(22): 2012-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26297612

RESUMEN

Polymer-drug conjugates have attracted great interest as one category of various promising nanomedicines due to the advantages of high drug-loading capacity, negligible burst release, and improved pharmacokinetics as compared with the small molecular weight drugs or the polymeric delivery systems with physically encapsulated drugs. Herein, a new type of oxidation-responsive polymer-drug conjugates composed of a poly(ethylene glycol) (PEG) block and a hydrophobic polyacrylate block to which Naproxen is attached through a phenylboronic ester linker is reported. The amphiphilic block copolymers are synthesized through the reversible addition-fragmentation chain transfer polymerization of the Naproxen-containing acrylic monomer using a PEG chain transfer agent. In neutral aqueous buffer, the conjugates formed nanoparticles with diameters of ≈150-300 nm depending on the length of the hydrophobic segment. The dynamic covalent bond of the phenylboronic ester is stabilized due to the hydrophobic microenvironment inside the nanoparticles. Upon exposure to H2 O2 , the phenylboronic ester is oxidized rapidly into the phenol derivative which underwent a 1,6-elimination reaction, releasing the intact Naproxen. The rate of drug release is influenced by the concentration of H2 O2 and the hydrophobic block length. This type of oxidation-responsive polymer-drug conjugate is feasible for other drugs containing hydroxyl group or amino group.


Asunto(s)
Resinas Acrílicas/química , Ácidos Borónicos/química , Portadores de Fármacos/química , Nanopartículas/química , Naproxeno/química , Polietilenglicoles/química , Composición de Medicamentos , Liberación de Fármacos , Ésteres , Peróxido de Hidrógeno/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Micelas , Nanomedicina/métodos , Nanopartículas/ultraestructura , Oxidación-Reducción , Tamaño de la Partícula , Polimerizacion
16.
Biomacromolecules ; 15(10): 3531-9, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25144934

RESUMEN

We report a new type of pH-sensitive supramolecular aggregates which possess a programmable character of sequential dePEGylation and degradation. As a platform of designing and building multifunctional supramolecular nanoparticles, a family of 6-OH ortho ester-modified ß-cyclodextrin (ß-CD) derivatives have been synthesized via the facile reaction between ß-CD and cyclic ketene acetals with different alkyl lengths. These asymmetric acid-labile ß-CD derivatives formed amphiphilic supramolecules with adamantane-modified PEG through host-guest interaction in polar solvents such as ethanol. The supramolecules can self-assemble in water to form acid-labile supramolecular aggregates. The results of TEM and light scattering measurements demonstrate that the size and morphology of the aggregates are influenced by the alkyl or PEG length and the host-guest feed ratio. By carefully balancing the alkyl and PEG lengths and adjusting the host-guest ratio, well-dispersed vesicles (50-100 nm) or sphere-like nanoparticles (200-500 nm) were obtained. Zeta potential measurements reveal that these supramolecular aggregates are capable of being surface-functionalized via dynamic host-guest interaction. The supramolecular aggregates were stable at pH 8.4 for at least 12 h as proven by the (1)H NMR and LLS measurements. However, rapid dePEGylation occurred at pH 7.4 due to the hydrolysis of the ortho ester linkages locating at the interface, which resulted in aggregation of the dePEGylated hydrophobic inner cores. Upon further decreasing the pH to 6.4, the hydrophobic cores were further degraded due to the acid-accelerated hydrolysis of the ortho esters. The incubation stability of the acid-labile supramolecular aggregates in neutral buffer could be improved by incorporating hydrophobic poly(ε-caprolactone) into the core of the aggregates.


Asunto(s)
Ésteres/química , Nanopartículas/química , Poliésteres/química , Polietilenglicoles/química , beta-Ciclodextrinas/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética/métodos , Microscopía Electrónica de Transmisión/métodos , Agua/química
17.
Soft Matter ; 10(15): 2671-8, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24647364

RESUMEN

A novel glucose-responsive hydrogel system based on dynamic covalent chemistry and inclusion complexation was described. Hydrogels are formed by simply mixing the solutions of three components: poly(ethylene oxide)-b-poly vinyl alcohol (PEO-b-PVA) diblock polymer, α-cyclodextrin (α-CD) and phenylboronic acid (PBA)-terminated PEO crosslinker. Dynamic covalent bonds between PVA and PBA provide sugar-responsive crosslinking, and the inclusion complexation between PEO and α-CD can promote hydrogel formation and enhance hydrogel stability. The ratios of the three components have a remarkable effect on the gelation time and the mechanical properties of the final gels. In rheological measurements, the hydrogels are demonstrated to possess solid-like behaviour and good structural recovery ability after yielding. The sugar-responsiveness of the hydrogels was examined by protein loading and release experiments, and the results indicate that this property is also dependent on the compositions of the gels; at a proper component ratio, a new glucose-responsive hydrogel system operating at physiological pH can be obtained. The combination of good biocompatibility of the three components and the easy preparation of hydrogels with tunable glucose-responsiveness may enable an alternative design of hydrogel systems that finds potential applications in biomedical and pharmaceutical fields, such as treatment of diabetes.


Asunto(s)
Glucosa/química , Hidrogeles/química , Animales , Ácidos Borónicos/química , Bovinos , Concentración de Iones de Hidrógeno , Polietilenglicoles/química , Polímeros/química , Reología , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , alfa-Ciclodextrinas/química
18.
Macromol Rapid Commun ; 35(4): 474-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307264

RESUMEN

A new approach to periodic vinyl copolymers via combination of atom transfer radical addition (ATRA) and atom transfer radical coupling (ATRC) is reported. The two examples are methyl methacrylate (MMA) and styrene (St) periodic copolymer (P(SMMS)) and acrylonitrile (AN) and St periodic copolymer (P(SAAS)). First, two monomer sequence units (MSU) with built-in sequence, SMMS and SAAS, are synthesized through the controlled ATRA of two ATRP initiators with St. Then, the ATRC of SMMS and SAAS are conducted at high radical conditions to generate two types of high-molecular-weight copolymers, P(SMMS) and P(SAAS). Though side reactions can not be totally avoided, characterizations of the polymer structure with a variety of means confirm that the main chain structures of P(SMMS) and (PSAAS) are predominantly with the periodic sequences from the MSUs. Attempts to suppress the side reactions are successful via the MNP-mediated ATRC of SMMS and SAAS.


Asunto(s)
Radicales Libres/química , Polímeros/química , Compuestos de Vinilo/química , Metilmetacrilato/química , Compuestos Nitrosos/química , Polímeros/síntesis química
19.
ACS Macro Lett ; 13(8): 1084-1092, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39103245

RESUMEN

We report a simple strategy to transform a nonpolymerizable six-membered α,ß-conjugated lactone, 5,6-dihydro-2H-pyran-2-one (DPO), into polymerizable bicyclic lactones via photochemical [2 + 2] cycloaddition. Two bicyclic lactones, M1 and M2, were obtained by the photochemical [2 + 2] cycloaddition of tetramethylethylene and DPO. Ring-opening polymerization (ROP) of M1 and M2 catalyzed by diphenyl phosphate (DPP), La[N(SiMe3)2]3, and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris (dimethylamino) phosphoranylide-namino]-2λ5, 4λ5-catenadi(phosphazene) (tBu-P4) were conducted. M1 is highly polymerizable, either DPP or La[N(SiMe3)2]3 could catalyze its living ROP under mild conditions, affording the well-defined PM1 with a predictable molar mass and low dispersity. M2 could only be polymerized with tBu-P4 as the catalyst, also generating the same polymer PM1. PM1 has high thermal stability, with a Td,5% being up to 376 °C. Ring-opening copolymerization (ROcP) of M1 and δ-valerolactone (δ-VL) catalyzed by La[N(SiMe3)2]3 afforded a series of random copolymers with enhanced thermal stabilities. Both PM1 and the copolymer containing 10 mol % M1 exhibited excellent resistance to acidic and basic hydrolysis. Our results demonstrate that direct photochemical [2 + 2] cycloaddition of α,ß-conjugated valerolactone is not only a strategy to tune its polymerizability, but also allows for the synthesis of highly thermally stable aliphatic polyesters, inaccessible by other methods.

20.
J Mater Chem B ; 12(6): 1569-1578, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38252543

RESUMEN

Antimicrobial peptide-mimicking antibacterial polymers represent a practical strategy to conquer the ever-growing threat of antimicrobial resistance. Herein, we report the syntheses and antibacterial performance of degradable amphiphilic cationic polyesters containing pendent quaternary ammonium motifs and hydrophobic alkyl or fluoroalkyl groups. These polyesters were conveniently prepared from poly(3-methylene-1,5-dioxepan-2-one) via highly efficient one-pot successive thiol-Michael addition reactions. The antibacterial activity of these polyesters against S. aureus and E. coli and their hemolytic activity toward red blood cells were evaluated; some of them showed moderate antibacterial activity and selectivity against Gram-positive S. aureus. The membrane disruption mechanism of these cationic polyesters was briefly explored by monitoring the bacteria killing kinetics and SEM observations. Moreover, the effects of cationic/hydrophobic ratio and the incorporation of fluoroalkyl groups on the antibacterial activity and selectivity of the polyesters were demonstrated.


Asunto(s)
Escherichia coli , Poliésteres , Poliésteres/química , Staphylococcus aureus , Polímeros/química , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA