Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Pollut ; 348: 123828, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522604

RESUMEN

Glyphosate (GLY) is a widely used herbicide that has been revealed to inhibit testosterone synthesis in humans and animals. Melatonin (MET) is an endogenous hormone that has been demonstrated to promote mammalian testosterone synthesis via protecting mitochondrial function. However, it remains unclear whether MET targets mitochondria to alleviate GLY-inhibited testosterone synthesis in avian. In this study, an avian model using 7-day-old rooster upon chronic exposure to GLY with the treatment of MET was designed to clarify this issue. Data first showed that GLY-induced testicular Leydig cell damage, structural damage of the seminiferous tubule, and sperm quality decrease were mitigated by MET. Transcriptomic analyses of the testicular tissues revealed the potentially critical role of mitophagy and steroid hormone biosynthesis in the process of MET counteracting GLY-induced testicular damage. Also, validation data demonstrated that the inhibition of testosterone synthesis due to GLY-induced mitochondrial dynamic imbalance and concomitant Parkin-dependent mitophagy activation is alleviated by MET. Moreover, GLY-induced oxidative stress in serum and testicular tissue were significantly reversed by MET. In summary, these findings demonstrate that MET effectively ameliorates GLY-inhibited testosterone synthesis by inhibiting mitophagy activation, which provides a promising remedy for the application of MET as a potential therapeutic agent to antagonize reproductive toxicity induced by GLY and similar contaminants.


Asunto(s)
Glifosato , Melatonina , Humanos , Masculino , Animales , Testosterona , Melatonina/farmacología , Pollos , Semen , Mitocondrias , Mamíferos
2.
Chem Biol Interact ; 399: 111152, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025289

RESUMEN

Cadmium (Cd), a prevalent environmental contaminant, has attracted widespread attention due to its serious health hazards. Ferroptosis is a form of iron-dependent oxidative cell death that contributes to the development of various kidney diseases. However, the mechanisms underlying the occurrence of ferroptosis in Cd-induced renal tubular epithelial cells (TECs) have not been fully elucidated. Hereby, both in-vitro and in-vivo experiments were established to elucidate this issue. In this study, we found that Cd elicited accumulation of lipid peroxides due to intracellular ferrous ion (Fe2+) overload and glutathione depletion, contributing to ferroptosis. Inhibition of ferroptosis via chelation of Fe2+ or reduction of lipid peroxidation can significantly mitigate Cd-induced cytotoxicity. Renal transcriptome analysis revealed that the activation of heme oxygenase 1 (HO-1) was closely related to ferroptosis in Cd-induced TECs injury. Cd-induced ferroptosis and resultant TECs injury are significantly alleviated due to HO-1 inhibition, demonstrating the crucial role of HO-1 in Cd-triggered ferroptosis. Further studies showed that accumulation of lipid peroxides due to iron overload and mitochondrial ROS (mtROS) generation was responsible for HO-1-triggered ferroptosis in Cd-induced cytotoxicity. In conclusion, the current study demonstrates that excessively upregulating HO-1 promotes iron overload and mtROS overproduction to trigger ferroptosis in Cd-induced TECs injury, highlighting that targeting HO-1-mediated ferroptosis may provide new ideas for preventing Cd-induced nephrotoxicity.


Asunto(s)
Cadmio , Células Epiteliales , Ferroptosis , Hemo-Oxigenasa 1 , Hierro , Túbulos Renales , Mitocondrias , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Cadmio/toxicidad , Hemo-Oxigenasa 1/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Túbulos Renales/citología , Túbulos Renales/patología , Hierro/metabolismo , Ratones , Peroxidación de Lípido/efectos de los fármacos , Línea Celular , Masculino , Humanos , Glutatión/metabolismo , Ratones Endogámicos C57BL
3.
Sci Total Environ ; 914: 169927, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199345

RESUMEN

Glyphosate (GLY), a widely used herbicide, can adversely affect the male reproductive health by inhibiting testosterone synthesis. Ferroptosis is a form of iron-dependent oxidative cell death that contributes to inhibition of testosterone secretion. However, it still remains unclear whether ferroptosis is involved in GLY-inhibited testosterone synthesis. Hereby, an in vitro model of 1 mM GLY-exposed testicular Leydig (TM3) cells was established to elucidate this issue. Data firstly showed that GLY causes cytotoxicity and testosterone synthesis inhibition via ferroptosis, while accumulation of lipid peroxides due to intracellular ferrous ion (Fe2+) overload and glutathione depletion is confirmed as a determinant of ferroptosis. Blockage of ferroptosis via chelation of Fe2+ or inhibition of lipid peroxidation can markedly mitigate GLY-induced testosterone synthesis inhibition. Also, autophagy activation is revealed in GLY-treated TM3 cells and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is involved in ferroptosis through the release of excess Fe2+. GLY-induced cytotoxicity and testosterone synthesis inhibition are significantly alleviated by NCOA4 knockdown, demonstrating the crucial role of NCOA4-mediated ferritinophagy in GLY-inhibited testosterone synthesis. In summary, this study provides solid evidence that NCOA4-mediated ferritinophagy promotes ferroptosis to inhibit testosterone synthesis, highlighting that targeting NCOA4 may be a potential therapeutic approach in GLY-induced male reproductive toxicity.


Asunto(s)
Ferroptosis , Glifosato , Masculino , Animales , Ratones , Células Intersticiales del Testículo , Autofagia , Hierro , Testosterona
4.
Environ Pollut ; 361: 124724, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142430

RESUMEN

Cadmium (Cd) is a toxic contaminant widely spread in natural and industrial environments. Adolescent exposure to Cd increases risk for obesity-related morbidity in young adults including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite this recognition, the direct impact of adolescent Cd exposure on the progression of MASLD later in life, and the mechanisms underlying these effects, remain unclear. Here, adolescent rats received control diet or diets containing 2 mg Cd2+/kg feed for 4 weeks, and then HFD containing 15% lard or control diet in young adult rats was selected for 6 weeks to clarify this issue. Data firstly showed that HFD-fed rats in young adulthood due to adolescent Cd exposure exhibited more severe MASLD, evidenced by increased liver damage, disordered serum and hepatic lipid levels, and activated NLRP3 inflammasome. Hepatic transcriptome analysis revealed the potential effects of mitochondrial dysfunction in aggravated MASLD due to Cd exposure. Verification data further confirmed that mitochondrial structure and function were targeted and disrupted during this process, shown by broken mitochondrial ridges, decreased mitochondrial membrane potential, imbalanced mitochondrial dynamic, insufficient ATP concentration, and enhanced mitochondrial ROS generation. However, mitophagy is inactively involved in clearance of damaged mitochondria induced by early Cd in HFD condition due to inhibited mitophagy receptor FUNDC1. In contrast, FUNDC1-dependent mitophagy activation prevents lipotoxicity aggravated by early Cd via suppressing mitochondrial ROS generation. Collectively, our data show that insufficient FUNDC1-dependent mitophagy can drive the transition from HFD-induced MASLD to MASH, and accordingly, these findings will provide a better understanding of potential mechanism of diet-induced metabolic diseases in the context of early environmental Cd exposure.


Asunto(s)
Cadmio , Mitofagia , Animales , Cadmio/toxicidad , Mitofagia/efectos de los fármacos , Ratas , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Oxidación-Reducción , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ratas Sprague-Dawley , Hígado/metabolismo , Hígado/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo
5.
Int Immunopharmacol ; 142(Pt B): 113180, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39305889

RESUMEN

BACKGROUND: Glyphosate (GLY) is a widely used herbicide with well-defined hepatotoxic effects, in which oxidative stress has been shown to be involved in the pathogenesis of hepatotoxicity. Melatonin (MET), an effective free radical scavenger, has been revealed to alleviate drug-induced liver damage by inhibiting oxidative stress. METHODS: In this study, a rooster model with primary chicken embryo hepatocytes was applied to elucidate the therapeutic effects of MET against GLY-induced hepatic damage and the potential mechanism. Histopathological examinations, biochemical tests and immunoblotting analysis were used to monitor the protective effects of MET on GLY-induced hepatic lipid accumulation. Molecular docking analysis was used to reveal the key reason of MET-improved hepatic lipid deposition. RESULTS: Data firstly showed that MET administration markedly improved GLY-induced hepatic injury, as evidenced by normalized liver enzymes and alleviated pathological changes of liver tissues. Moreover, MET supplementation alleviated GLY-induced hepatic lipid accumulation, which was correlated with improved serum and hepatic lipid profiles and normalized expression of lipolysis- and lipogenesis-related proteins. Notably, MET significantly inhibited vital enzymes involved in stimulating oxidative stress. Moreover, MET enhanced GLY-inhibited Nrf2 nuclear transcription and increased the expressions of its downstream target genes HO1 and NQO1. Further studies revealed that MET may interact with Nrf2 to enhance nuclear translocation of Nrf2. CONCLUSION: Collectively, our results provide the first direct evidence that MET is a novel regulator of Nrf2, highlighting that Nrf2 may be a potential therapeutic target for GLY-induced lipotoxic liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Glicina , Glifosato , Hepatocitos , Herbicidas , Metabolismo de los Lípidos , Hígado , Melatonina , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Animales , Glicina/análogos & derivados , Glicina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Transducción de Señal/efectos de los fármacos , Herbicidas/toxicidad , Pollos , Estrés Oxidativo/efectos de los fármacos , Masculino , Células Cultivadas , Embrión de Pollo , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología
6.
J Adv Res ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033876

RESUMEN

INTRODUCTION: Environmental and occupational exposure to cadmium (Cd) has been shown to cause acute kidney injury (AKI). Previous studies have demonstrated that autophagy inhibition and lysosomal dysfunction are important mechanisms of Cd-induced AKI. OBJECTIVES: Transcription factor EB (TFEB) is a critical transcription regulator that modulates autophagy-lysosome function, but its role in Cd-induced AKI is yet to be elucidated. Thus, in vivo and in vitro studies were conducted to clarify this issue. METHODS AND RESULTS: Data firstly showed that reduced TFEB expression and nuclear translocation were evident in Cd-induced AKI models, accompanied by autophagy-lysosome dysfunction. Pharmacological and genetic activation of TFEB improved Cd-induced AKI via alleviating autophagy inhibition and lysosomal dysfunction, whereas Tfeb knockdown further aggravated this phenomenon, suggesting the key role of TFEB in Cd-induced AKI by regulating autophagy. Mechanistically, Cd activated mechanistic target of rapamycin complex 1 (mTORC1) to enhance TFEB phosphorylation and thereby inhibiting TFEB nuclear translocation. Cd also activated chromosome region maintenance 1 (CRM1) to promote TFEB nuclear export. Meanwhile, Cd activated general control non-repressed protein 5 (GCN5) to enhance nuclear TFEB acetylation, resulting in the decreased TFEB transcriptional activity. Moreover, inhibition of CRM1 or GCN5 alleviated Cd-induced AKI by enhancing TFEB activity, respectively. CONCLUSION: In summary, these findings reveal that TFEB phosphorylation, nuclear export and acetylation independently suppress TFEB activity to cause Cd-induced AKI via regulating autophagy-lysosome function, suggesting that TFEB activation might be a promising treatment strategy for Cd-induced AKI.

7.
Environ Pollut ; 324: 121394, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906059

RESUMEN

Glyphosate (Gly) is the most widely used herbicide with well-defined hepatotoxic effects, but the underlying mechanisms of Gly-induced hepatic steatosis remain largely unknown. In this study, a rooster model combined with primary chicken embryo hepatocytes was established to dissect the progresses and mechanisms of Gly-induced hepatic steatosis. Data showed that Gly exposure caused liver injury with disrupted lipid metabolism in roosters, manifested by significant serum lipid profile disorder and hepatic lipid accumulation. Transcriptomic analysis revealed that PPARα and autophagy-related pathways played important roles in Gly-induced hepatic lipid metabolism disorders. Further experimental results suggested that autophagy inhibition was involved in Gly-induced hepatic lipid accumulation, which was confirmed by the effect of classic autophagy inducer rapamycin (Rapa). Moreover, data substantiated that Gly-mediated autophagy inhibition caused nuclear increase of HDAC3, which altered epigenetic modification of PPARα, leading to fatty acid oxidation (FAO) inhibition and subsequently lipid accumulation in the hepatocytes. In summary, this study provides novel evidence that Gly-induced autophagy inhibition evokes the inactivation of PPARα-mediated FAO and concomitant hepatic steatosis in roosters by mediating epigenetic reprogramming of PPARα.


Asunto(s)
Hígado Graso , PPAR alfa , Embrión de Pollo , Masculino , Animales , PPAR alfa/genética , PPAR alfa/metabolismo , Pollos/metabolismo , Hígado Graso/inducido químicamente , Hígado/metabolismo , Metabolismo de los Lípidos , Ácidos Grasos/metabolismo , Autofagia , Epigénesis Genética , Glifosato
8.
Vet Res Commun ; 47(2): 651-661, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36261742

RESUMEN

Glyphosate (Gly) is a globally spread herbicide that can cause toxic injuries to hepatocytes. Dietary trehalose (Tre) exerts cytoprotective effect in numerous liver diseases through anti-oxidant and anti-inflammatory properties. However, it is yet to be investigated whether Tre affords protection against Gly-induced hepatotoxicity. To evaluate the negative effect of Gly in liver and assess the possible protective role of Tre, sixty Hy-line Brown roosters were allocated into three groups: the first group presented the control with a normal diet, the second group fed normal feed containing 200mg/kg Gly, and the third group fed normal feed containing 200 mg/kg Gly and 5 g/kg Tre. Plasma and liver tissues were collected and analyzed after 120 days. Firstly, Gly-elevated serum levels of hepatic injury markers and liver histopathological damages were evidently alleviated by Tre administration. Also, Tre normalized Gly-altered serum and hepatic lipid profiles and Oil Red O-stained lipid levels, suggesting the improvement of hepatic steatosis. The severely accumulated malondialdehyde levels and impaired antioxidant status in Gly-exposed roosters were markedly improved by administration with Tre. Simultaneously, Gly-inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) level and consequent reduced levels of Nrf2-downstream targets in liver were markedly normalized by Tre treatment. Additionally, Tre treatment evidently mitigated Gly-induced inflammasome response via inhibiting NLRP3 inflammasome activation. Overall, these observations provide novel insights that the protective action of Tre against Gly-induced hepatic steatosis is attributed to activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation.


Asunto(s)
Inflamasomas , Hepatopatías , Masculino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Trehalosa/farmacología , Trehalosa/metabolismo , Pollos/metabolismo , Hígado/metabolismo , Antioxidantes/farmacología , Hepatopatías/veterinaria , Lípidos/farmacología , Glifosato
9.
J Adv Res ; 46: 87-100, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37003700

RESUMEN

INTRODUCTION: Lead (Pb) is an environmental toxicant that poses severe health risks to humans and animals, especially renal disorders. Pb-induced nephrotoxicity has been attributed to oxidative stress, in which apoptosis and autophagy are core events. OBJECTIVES: Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a major contributor to counteract oxidative damage, while hyperactivation or depletion of Nrf2 pathway can cause the redox imbalance to induce tissue injury. This study was performed to clarify the function and mechanism of Nrf2 in Pb-triggered kidney injury. METHODS AND RESULTS: First, data showed that Pb exposure activates Nrf2 pathway in primary rat proximal tubular cells. Next, Pb-induced Nrf2 activation was effectively regulated by pharmacological modulation or siRNA-mediated knockdown in vitro and in vivo assays. Notably, Pb-triggered cytotoxicity, renal injury and concomitant apoptosis were improved by Nrf2 downregulation, confirming that Pb-induced persistent Nrf2 activation contributes to nephrotoxicity. Additionally, Pb-triggered autophagy blockage was relieved by Nrf2 downregulation. Mechanistically, we found that Pb-induced persistent Nrf2 activation is attributed to reduced Nrf2 ubiquitination and nuclear-cytoplasmic loss of Keap1 in a p62-dependent manner. CONCLUSIONS: In conclusion, these findings highlight the dark side of persistent Nrf2 activation and potential crosstalk among Pb-induced persistent Nrf2 activation, apoptosis and autophagy blockage in Pb-triggered nephrotoxicity.


Asunto(s)
Plomo , Factor 2 Relacionado con NF-E2 , Humanos , Ratas , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Plomo/toxicidad , Plomo/metabolismo , Apoptosis , Riñón , Autofagia
10.
Chem Biol Interact ; 368: 110249, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347317

RESUMEN

Pyroptosis is a pro-inflammatory type of cell death involved in the pathogenesis of multiple kidney diseases, while transcription factor EB (TFEB) is shown to be important for rescuing renal function. Cadmium (Cd) is an omnipresent toxic heavy metal with definite nephrotoxicity, but there is lacking of evidence regarding an interplay between TFEB activity and pyroptosis during Cd exposure. In this study, Cd-exposed NRK-52E cells were used to clarify this issue as an in vitro model of acute kidney injury. First, our results showed that Cd exposure evidently elevated the protein levels involved in pyroptosis, increased lactate dehydrogenase (LDH) release, and disrupted the cell membrane integrity, suggesting the occurrence of pyroptosis in NRK-52E cells. It is also shown that Cd induced a burst of reactive oxygen species (ROS) to mediate pyroptosis. Simultaneously, downregulated TFEB expression with its inhibited nuclear translocation was revealed in Cd-exposed NRK-52E cells. Further investigations have demonstrated that TFEB knockdown promoted Cd-induced ROS production to exacerbate the pyroptosis, while TFEB overexpression inhibited Cd-induced ROS production to alleviate the pyroptosis in NRK-52E cells. In summary, these findings demonstrate that Cd-inhibited TFEB function results in ROS overproduction to promote pyroptosis in NRK-52E cells, which provide new insight into the therapeutic targets for Cd-induced kidney diseases.


Asunto(s)
Enfermedades Renales , Piroptosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Cadmio/toxicidad , Línea Celular , Células Epiteliales/metabolismo , Enfermedades Renales/metabolismo
11.
Environ Pollut ; 314: 120314, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183875

RESUMEN

Glyphosate (GLY), one of the most extensively used herbicides in the world, has been shown to inhibit testosterone synthesis in male animals. Mitochondria are crucial organelles for testosterone synthesis and its dysfunction has been demonstrated to induce the inhibition of testosterone biosynthesis. However, whether low-dose GLY exposure targets mitochondria to inhibit testosterone synthesis and its underlying mechanism remains unclear. Here, an in vitro model of 10 µM GLY-exposed mouse Leydig (TM3) cells was established to elucidate this issue. Data firstly showed that mitochondrial malfunction, mainly manifested by ultrastructure damage, disturbance of mitochondrial dynamics and mitochondrial reactive oxygen species (mtROS) overproduction, was responsible for GLY-decreased protein levels of steroidogenic enzymes, which leads to the inhibition of testosterone synthesis. Enhancement of autophagic flux and activation of mitophagy were shown in GLY-treated TM3 cells, and further studies have revealed that GLY-activated mitophagy is parkin-dependent. Notably, GLY-inhibited testosterone production was significantly improved by parkin knockdown. Finally, data showed that treatment with mitochondria-targeted antioxidant Mito-TEMPO (M-T) markedly reversed GLY-induced mitochondrial network fragmentation, activation of parkin-dependent mitophagy and consultant testosterone reduction. Overall, these findings demonstrate that GLY induces mtROS overproduction to activate parkin-dependent mitophagy, which contributes to the inhibition of testosterone synthesis. This study provides a potential mechanistic explanation for how GLY inhibits testosterone synthesis in mouse Leydig cells.


Asunto(s)
Herbicidas , Mitofagia , Masculino , Ratones , Animales , Mitofagia/fisiología , Especies Reactivas de Oxígeno/metabolismo , Células Intersticiales del Testículo/metabolismo , Antioxidantes/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Herbicidas/toxicidad , Herbicidas/metabolismo , Testosterona/metabolismo , Glifosato
12.
Biol Trace Elem Res ; 200(7): 3326-3335, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34546491

RESUMEN

Manganese (Mn) is a crucial trace element for poultry nutrition, and its deficiency compromises tibial cartilage development, leading to perosis and a higher incidence of slipped tendon. Tibial dyschondroplasia (TD) is a metabolic cartilage disease characterized by disruption of endochondral bone formation, which is closely related to extracellular matrix (ECM) degradation, in which Mn deficiency plays an important role. Previous studies have confirmed the role of matrix metalloproteinases (MMPs) in the pathogenesis of TD, but whether dysregulated ECM degradation and MMP expression profiles in growth plate are involved in Mn deficiency-induced avian TD has not been fully elucidated yet. Thus, this study was conducted to clarify these issues. Firstly, we successfully established TD model induced by Mn deficiency in broiler chicks. Mn deficiency decreased the number of chondrocytes, contents of proteoglycan, and type II collagen in tibial growth plate, demonstrating the tibial growth plate damage with enhanced ECM degradation. Also, Mn deficiency inhibited the Nrf2 signaling pathway and enhanced the protein levels of NLRP3, active caspase-1, and active IL-1ß in tibial growth plate, indicating the oxidative stress and inflammatory response in Mn deficiency-induced TD. Additionally, upregulated expression levels of MMPs (MMP1, 9, and 13) were observed in tibial growth plate of Mn deficiency group. In summary, these findings suggest that Mn deficiency-enhanced ECM degradation is involved in avian TD, which may be correlated with oxidative stress, inflammatory response, and upregulation of MMPs.


Asunto(s)
Osteocondrodisplasias , Enfermedades de las Aves de Corral , Animales , Pollos , Matriz Extracelular/metabolismo , Placa de Crecimiento/metabolismo , Manganeso/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Osteocondrodisplasias/inducido químicamente , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Enfermedades de las Aves de Corral/metabolismo , Tibia/metabolismo
13.
Chem Biol Interact ; 330: 109199, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32805210

RESUMEN

Obesity is characterized by the deposition of excessive body fat, and is caused by energy imbalance, especially when consuming fat-rich diets. High fat diet (HFD)-associated obesity is greatly common in patients with non-alcoholic fatty liver disease (NAFLD) that is emerging as one of the most universal causes of liver disease worldwide, especially in Western countries. In spite of its high prevalence, only a small proportion of affected individuals will become inflamed, followed by fibrosis and chronic liver diseases, and most patients only show simple steatosis. In this case, the full comprehension of the mechanisms underlying the progression of NAFLD is of extreme significance; in spite of progress in this field, awareness on the development of NAFLD is still incomplete. Traditionally, liver steatosis is commonly connected with HFD, obesity, and insulin resistance (IR). Recently, various possible mechanisms have been put forward for liver damage, including endoplasmic reticulum stress, perturbation of autophagy, mitochondrial dysfunction, hepatocellular apoptosis, gut microbiota imbalance, dysregulation of microRNAs, and genetic/epigenetic risk factors, as well as an increase in inflammatory responses, among many others. Collectively, these proposed mechanisms allow for a variety of hits acting together on subjects to mediated NAFLD and will offer a more accurate explanation for progression of NAFLD. Therefore, this review summarizes the present information concerning NAFLD after HFD exposure, as well as discusses possible mechanisms through which it may arise.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones
14.
J Inorg Biochem ; 212: 111231, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32862047

RESUMEN

Autophagy dysregulation is implicated in cadmium (Cd)-induced nephrotoxicity. The mammalian target of rapamycin complex 1 (mTORC1) is a negative regulator of autophagy, but its role in Cd-induced autophagy inhibition and possible regulatory mechanisms remains poorly understood. In the present study, Cd exposure activated mTORC1 in primary rat proximal tubular (rPT) cells, and two mTORC1 inhibitors (rapamycin and torin 1) were separately utilized to inhibit Cd-induced mTORC1 activation. Data showed that Cd-inhibited autophagic flux was markedly restored by two mTORC1 inhibitors, respectively, as evidenced by immunoblot analysis of autophagy marker proteins and tandem red fluorescent protein-green fluorescent protein-microtubule associated protein light chain 3 (RFP-GFP-LC3) fluorescence microscopy assay. Importantly, Cd exposure triggered the recruitment of mTORC1 onto lysosome membrane assessed by immunofluorescence co-localization analysis, which was obviously inhibited by rapamycin or torin 1. Moreover, Cd-induced lysosomal alkalization, suppressed vacuolar ATPases (V-ATPases) protein levels and impaired lysosomal degradation capacity were markedly reversed by rapamycin or torin 1. In summary, these findings demonstrate that Cd recruits mTORC1 to lysosome membrane to induce its activation, which results in lysosomal dysfunction and resultant autophagy inhibition in rPT cells.


Asunto(s)
Autofagia/efectos de los fármacos , Cadmio/toxicidad , Túbulos Renales Proximales/efectos de los fármacos , Lisosomas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , Túbulos Renales Proximales/citología , Lisosomas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA