Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(2): 964-974, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38232296

RESUMEN

Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties. Herein, hyaluronic acid (HA), a gooey, slippery substance with CD44-targeting ability, was conjugated with a thermosensitive polymer poly(acrylamide-co-acrylonitrile) to produce tumor-targeting and thermosensitive polymeric nanocarrier (HA-P) with an upper critical solution temperature (UCST) at 45 °C, which further coloaded chemo-drug doxorubicin (DOX) and photosensitizer Indocyanine green (ICG) to prepare thermosensitive nanoreactors HA-P/DOX&ICG. With photosensitizer ICG acting as the "temperature control element", HA-P/DOX&ICG nanoparticles can respond to temperature changes when receiving near-infrared irradiation and realize subsequent structure depolymerization for burst drug release when the ambient temperature was above 45 °C, achieving programmable and on-demand drug release for effective antitumor therapy. Tumor inhibition rate increased from 61.8 to 95.9% after laser irradiation. Furthermore, the prepared HA-P/DOX&ICG nanoparticles possess imaging properties, with ICG acting as a probe, enabling real-time monitoring of drug distribution and therapeutic response, facilitating precise treatment evaluation. These results provide enlightenment for the design of active tumor targeting and NIR-triggered programmable and on-demand drug release of thermosensitive nanoreactors for tumor therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Hipertermia Inducida/métodos , Fototerapia/métodos , Doxorrubicina/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Verde de Indocianina/farmacología , Verde de Indocianina/química , Nanotecnología , Liberación de Fármacos , Línea Celular Tumoral
2.
Biomacromolecules ; 21(7): 2818-2828, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32496052

RESUMEN

Lymph nodes are proposed as the intriguing target in cancer immunotherapy, and cellular immunity is vital for vaccines to fight against cancer. However, inefficient delivery of vaccines to lymph nodes and deficient lysosomal escape of antigens result in weak cellular immunity, which restrains the strength of vaccines in inducing antitumor immune responses. Hence, dendritic cell membrane (DCM)/histidine-modified stearic acid-grafted chitosan (HCtSA)/ovalbumin (OVA) micelles, as pH-responsive biomimetic vaccines, were fabricated to target lymph nodes and induce cellular immunity for enhanced antitumor immune responses. DCM/HCtSA/OVA micelles exhibited pH-dependent antigen release behavior, which resulted in efficient escape of antigens from dendritic cell (DC) lysosomes. Besides, DCM/HCtSA/OVA micelles accumulated and reserved in the lymph nodes, which ensured effective uptake by DCs. Importantly, DCM/HCtSA/OVA micelles induced potent T cell immune responses, promoted secretion of antitumor-related cytokines, and notably inhibited tumor growth. Overall, DCM/HCtSA/OVA micelles exhibit great potential in targeted immunotherapy and can provide guidance for the design of vaccines.


Asunto(s)
Vacunas contra el Cáncer , Vacunas , Animales , Antígenos , Biomimética , Células Dendríticas , Concentración de Iones de Hidrógeno , Inmunidad Celular , Ganglios Linfáticos , Ratones , Ratones Endogámicos C57BL , Micelas , Ovalbúmina
3.
Biomaterials ; 275: 120958, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34130142

RESUMEN

Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) play an important role in the development of tumors by secreting a variety of cytokines or directly communicating with tumor cells, making TAMs-targeted therapeutic strategies very attractive. It has been reported that oncogene c-Myc is related to every aspect of the oncogenic process of tumor cells and the alternative activation of macrophages. Hence, we constructed a glycolipid nanocarrier containing ROS-responsive peroxalate linkages (CSOPOSA) for ROS-triggered release of drugs and further modified it with Ex 26 (Ex 26-CSOPOSA), a selective sphingosine 1-phosphate receptor 1 (S1PR1) antagonist, to achieve the dual-targeted delivery of the c-Myc inhibitor JQ1 via S1PR1, which is overexpressed on both tumor cells and TAMs, thereby inducing apoptosis of tumor cells, and blocking M2 polarization of macrophages. More strikingly, our studies found that JQ1 could effectively inhibit the migration of tumor cells induced by M2 macrophages-derived exosomes via blocking Caveolin-1 related intercellular exosome exchange through lncRNA H19 and miR-107. The in vivo results revealed that this dual-targeted delivery strategy effectively inhibited tumor growth and metastasis with less systemic toxicity, providing a potential method for effective tumor treatment.


Asunto(s)
Caveolina 1 , Exosomas , Neoplasias Experimentales/tratamiento farmacológico , Especies Reactivas de Oxígeno , Animales , Línea Celular Tumoral , Portadores de Fármacos , Liberación de Fármacos , Femenino , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-myc , Células RAW 264.7 , Microambiente Tumoral
4.
Carbohydr Polym ; 240: 116270, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32475559

RESUMEN

Tumor-draining lymph node (TDLN), already bathed in tumor antigens, has been proposed as an intriguing site for cancer immunotherapy. Targeted delivery of adjuvants to TDLN, presumably could induce antitumor immunity for personalized immunotherapy. Although molecular adjuvants can be used for personalized immunotherapy, their efficacy is limited by insufficient antigen uptake by dendritic cells (DCs). In contrast, nanomaterial-based adjuvants can enhance antigen uptake by DCs by capturing antigens. Herein, mannose modified stearic acid-grafted chitosan micelles (MChSA), which presumably could target TDLN, were engineered to capture endogenous antigens and enhance antigen uptake by DCs for personalized immunotherapy. MChSA micelles showed strong antigen-capturing and TDLN targeting ability. Importantly, MChSA micelles induced robust CD4+ and CD8+ T cell responses, stimulated antitumor related cytokine secretion and notably inhibited tumor growth. MChSA micelles, which can target TDLN to induce potent antitumor immune responses as antigen-capturing adjuvants, exhibit great potential in personalized cancer immunotherapy.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Quitosano/química , Células Dendríticas/efectos de los fármacos , Ganglios Linfáticos , Neoplasias/terapia , Animales , Línea Celular Tumoral , Células Dendríticas/citología , Inmunoterapia , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Micelas
5.
Carbohydr Polym ; 229: 115435, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826424

RESUMEN

Micelles are one of the most investigated nanocarriers for drug delivery. In this study, polymeric micelles based on chitosan were prepared to explore the delivery mechanism which was critical for enhancing tumor targeting but still remain elusive. The chitosan polymer COSA was synthesized and the polymeric micelles showed good self-assembly ability, good dispersion stability and low toxicity. After being intravenously administered, the micelles were selectively taken up by circulating monocytes in a receptor-mediated way (almost 94% uptake in Ly-6Chi monocytes, below 7% in all other circulating cells) and reach the tumor with the subsequent travel of these cells. In addition, the micelles in macrophages (differentiated from circulating monocytes) can be exocytosed and subsequently taken up by cancer cells. The delivery mechanism of COSA micelles is directional for the novel strategies to enhance tumor targeting and the micelles are promising candidates for diseases in which monocytes are directly implicated.


Asunto(s)
Quitosano/metabolismo , Portadores de Fármacos/metabolismo , Micelas , Monocitos/metabolismo , Animales , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Liberación de Fármacos , Endocitosis , Exocitosis , Femenino , Ratones , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Células RAW 264.7
6.
ACS Appl Mater Interfaces ; 10(39): 33532-33544, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30192498

RESUMEN

Cellular immunity is essential for the effectiveness of vaccines against cancer. After capture of vaccines, dendritic cells (DCs) have to migrate to lymph nodes via chemokine receptor type 7 (CCR7). Subsequently, DCs present cytosolic antigens via major histocompatibility complex class I (MHC I) molecules to induce cellular immunity. However, various vaccines fail to induce potent cellular immunity due to insufficient MHC I-restricted antigen presentation and limitations of immune adjuvants. Hence, we constructed novel immune adjuvant targeting micelles (M-COSA) to targeted codeliver antigen ovalbumin (OVA) and plasmid DNA encoding CCR7 (CCR7 pDNA) to the cytosol of DCs, thus promoting DC migration to lymph nodes to boost MHC I-restricted antigen presentation. M-COSA exhibited adjuvant activity and demonstrated more efficient DC cellular uptake compared with COSA. M-COSA/OVA/pDNA increased costimulatory molecule expression and cytokine secretion, resulting in DC activation and maturation. Moreover, antigens and pDNA, which were encapsulated in micelles, escaped from the endosome into the cytoplasm to achieve MHC I-restricted antigen presentation and increase CCR7 expression. The number of CD8+ T cells, which was positively correlated with tumor rejection, was notably increased and tumor growth was dramatically suppressed after vaccination with M-COSA/OVA/pDNA. In summary, M-COSA/OVA/pDNA micelles, which allow DC targeting and efficient DC migration to lymph nodes to enhance cellular immunity, exhibit effective tumor inhibition and lay the foundation for novel vaccine design.


Asunto(s)
Células Dendríticas/citología , Inmunidad Celular/fisiología , Ganglios Linfáticos/citología , Micelas , Adyuvantes Inmunológicos , Animales , Presentación de Antígeno/inmunología , Línea Celular , Movimiento Celular/fisiología , Electroforesis en Gel de Agar , Femenino , Inmunidad Celular/genética , Interferón gamma/metabolismo , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA