Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(2): 1076-1087, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33373203

RESUMEN

Although it is known that the solar irradiation of chromophoric dissolved organic matter (CDOM) solutions generates H2O2, whether or not organic hydroperoxides (ROOHs) are photochemically formed remains unclear. This study employs high-performance liquid chromatography with the postcolumn enzymatic derivatization method to examine whether ROOHs can be formed in CDOM solutions under simulated solar irradiation. Methylhydroperoxide (MHP) is the only identified ROOH under our experimental conditions, and the quantum yields of MHP (ΦMHP) vary from (1.09 ± 0.09) × 10-6 to (4.95 ± 0.11) × 10-6 in the tested CDOM solutions, including four reference natural organic matters and two effluent organic matters. The quantum yields of H2O2 (ΦH2O2) are simultaneously measured, and the ratios of ΦH2O2 to ΦMHP range from 147 to 676. The formation of MHP is highly related to the presence of superoxide radical ions (O2•-) and methyl radicals (CH3•); therefore, a photoformation mechanism of MHP has been proposed. The photochemically generated CH3• reacts with O2 to yield CH3OO•. Subsequently, CH3OO• is reduced to MHP by O2•-. Our results also suggest that the yield of CH3• to MHP under air-saturated conditions is 52% and increases to 98% under oxygen-saturated conditions. The decays of MHP and H2O2 are very similar in terms of photodegradation, hydrolysis, Fenton, and photo-Fenton reactions. This study can be useful to understand the photochemical formation of organic peroxides in surface waters.


Asunto(s)
Peróxido de Hidrógeno , Procesos Fotoquímicos , Peróxidos , Fenómenos Físicos , Superóxidos
2.
Environ Sci Technol ; 55(22): 15390-15399, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34730346

RESUMEN

The iron(II)-activated peroxymonosulfate [Fe(II)/PMS] process is effective in degrading organic contaminants with a rapid oxidation stage followed by a slow one. Nevertheless, prior studies have greatly underestimated the degradation rates of organic contaminants in the rapid oxidation stage and ignored the differences in the kinetics and mechanism of organic contaminants degradation in these two oxidation stages. In this work, we investigated the kinetics and mechanisms of organic contaminants in this process under acidic conditions by combining the stopped-flow spectrophotometric method and batch experiments. The organic contaminants were rapidly oxidized with rate constants of 0.18-2.9 s-1 in the rapid oxidation stage. Meanwhile, both Fe(IV) and SO4•- were active oxidants and contributed differently to the degradation of different organic contaminants in this stage. Additionally, the presence of Cl- promoted the degradation of both phenol and estradiol but the effects of Br- and humic acid on phenol degradation differed from those on estradiol degradation in the rapid oxidation stage. In contrast, the degradation of phenol and estradiol was slow and the amounts of Fe(IV) and SO4•- generated were small in the slow oxidation stage. This work updates the fundamental understanding of the degradation of organic contaminants in this process.


Asunto(s)
Hierro , Peróxidos , Compuestos Ferrosos , Oxidación-Reducción
3.
Environ Sci Technol ; 54(3): 1816-1826, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31893633

RESUMEN

Photochemical transformation driven by sunlight is one of the most important natural processes for organic contaminant attenuation. In the current study, statistical analysis-assisted high-resolution mass spectrometry was employed to investigate the phototransformation of nontarget features in wastewater effluents under various radical quenching/enhancing conditions. A total of 9694 nontarget features were extracted from the effluents, including photoresistant features, photolabile features, and transformation products. 65% of the wastewater effluent features were photoresistant, and the photolabile features could be classified into five groups: direct photolysis group (group I), HO•-originated species-dominated group (group II), 3OM*-dominated group (group III), photochemically produced reactive intermediates combination-dominated group (group IV), and non-first-order degradation group (group V). The direct photolyzed features were observed to degrade significantly faster than the indirect photolyzed features. Moreover, group II dominated by HO•-originated species contributed 34% to the photolabile features. The reaction types that occurred in the phototransformation process were analyzed by linkage analysis. The results suggested that oxygen addition and dealkyl group reactions were the most common reaction types identified in the phototransformation process. Overall, high-resolution mass spectrometry coupled with statistical analysis was applied here to understand the photochemical behavior of the unknown features in wastewater effluents.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Espectrometría de Masas , Fotólisis , Luz Solar
4.
Environ Sci Technol ; 54(16): 10118-10127, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32693577

RESUMEN

Cylindrospermopsin (CYN) is one of the most important cyanobacterial toxins frequently found in surface waters. We reported the detailed kinetics and pathways for the reaction of CYN with carbonate radicals (CO3•-). The rate constants of neutral and deprotonated CYN with CO3•- were found to be (1.2 ± 0.7) × 107 M-1 s-1 and (3.0 ± 0.4) × 108 M-1 s-1, respectively. The transformation products for the oxidation of CYN by CO3•- were identified by high-resolution mass spectrometry, illustrating that the guanidine and bridged hydroxyl portions were the primary moieties attacked by CO3•-. Thus, three transformation pathways, including cleavage of the hydroxymethyluracil moiety, hydroxylation, and oxidation of the bridged hydroxyl group, are proposed for the CO3•- oxidation of CYN. Moreover, this study reported that dissolved organic matter (DOM) reduced the transformation rate of CYN by inhibiting the transformation of oxidation intermediates. Finally, the role of CO3•- in CYN degradation was estimated in both sunlit surface waters and advanced oxidation processes (AOPs), demonstrating that CO3•- played an important role in CYN attenuation under nonacidic environmentally relevant conditions. The kinetic parameters and product information obtained in this study will be of considerable interest for the application of AOPs and predicting the environmental fate of CYN.


Asunto(s)
Carbonatos , Uracilo , Alcaloides , Toxinas Bacterianas , Toxinas de Cianobacterias , Cinética , Oxidación-Reducción , Uracilo/análogos & derivados
5.
Environ Sci Technol ; 54(6): 3199-3208, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32073838

RESUMEN

The photochemical formation and decay rates of superoxide radical ions (O2•-) in irradiated dissolved organic matter (DOM) solutions were directly determined by the chemiluminescent method. Under irradiation, uncatalyzed and catalyzed O2•- dismutation account for ∼25% of the total O2•- degradation in air-saturated DOM solutions. Light-induced O2•- loss, which does not produce H2O2, was observed. Both the O2•- photochemical formation and light-induced loss rates are positively correlated with the electron-donating capacities of the DOM, suggesting that phenolic moieties play a dual role in the photochemical behavior of O2•-. In air-saturated conditions, the O2•- quantum yields of 12 DOM solutions varied in a narrow range, from 1.8 to 3.3‰, and the average was (2.4 ± 0.5)‰. The quantum yield of O2•- nonlinearly increased with increasing dissolved oxygen concentration. Therefore, the quantum yield of one-electron reducing intermediates, the precursor of O2•-, was calculated as (5.0 ± 0.4)‰. High-energy triplets (3DOM*, ET > 200 kJ mol-1) and 1O2 quenching experiments indicate that 3DOM* and 1O2 play minor roles in O2•- production. These results are useful for predicting the photochemical formation and decay of O2•- in sunlit surface waters.


Asunto(s)
Peróxido de Hidrógeno , Superóxidos , Iones , Cinética , Procesos Fotoquímicos
6.
Environ Sci Technol ; 53(5): 2482-2490, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30758190

RESUMEN

Excited triplet states of chromophoric dissolved organic matter (3CDOM*) are highly reactive species in sunlit surface waters and play a critical role in reactive oxygen species (ROS) formation and pollutant attenuation. In the present study, a series of chemical probes, including sorbic acid, sorbic alcohol, sorbic amine, trimethylphenol, and furfuryl alcohol, were employed to quantitatively determine 3CDOM* and 1O2 in various organic matters. Using a high concentration of sorbic alcohol as high-energy triplet states quencher, 3CDOM* can be first distinguished as high-energy triplet states (>250 kJ mol-1) and low-energy triplet states (<250 kJ mol-1). The terrestrial-origin natural organic matter (NOM) was found to mainly consist of low-energy triplet states, while high-energy triplet states were predominant in autochthonous-origin NOM and effluent/wastewater organic matter (EfOM/WWOM). The 1O2 quantum yields and electron transfer quantum yield coefficients ( fTMP) generated from low-energy triplet states remained constant in all tested organic matters. External phenolic compound showed quenching effects on triplet-state formation and tended to have a higher quenching efficiency for aromatic ketone triplet states, which are the main high-energy triplet states. In comparison with terrestrial-origin NOM, autochthonous-origin NOM and EfOM/WWOM presented lower reaction rate constants for sorbic amines and higher reaction rate constants for sorbic acid, and these differences are likely due to dissimilar surface electric charge conditions. Understanding the triplet-state photochemistry of CDOM is essential for providing useful insights into their photochemical effects in aquatic systems.


Asunto(s)
Ácido Sórbico , Aguas Residuales , Aminas , Fotoquímica , Fenómenos Físicos
7.
Environ Sci Technol ; 53(22): 13098-13106, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31638785

RESUMEN

Carbamate insecticides, which are common micropollutants in surface waters, were found to generate dichloromethlyamine (DCMA) during chlorination. DCMA formation from other precursors has been reported previously; it is part of the emerging class of nitrogen-based disinfection byproducts (N-DBPs) of health concern in chlorinated water. However, there is a limited understanding about its formation, stability, and toxicity. Four carbamate insecticides (methomyl, carbofuran, carbaryl, and thiodicarb) were examined as DCMA precursors over a range of reaction conditions, based on variables of chlorine/precursor (Cl/P) molar ratio, pH, time, and temperature. DCMA was found to be the dominant volatile DBP to result from chlorination of all four carbamate insecticides, with molar yields ranging from 12% to 150% at a Cl/P molar ratio of 20. Further experiments indicated CH3NCl2 to be relatively stable, with a half-life of up to 35 h in water. The toxicity of CH3NCl2 was investigated using a bacterial bioluminescence inhibition test and survival of human lung tumor cells. The results of these toxicity assays indicated that CH3NCl2 is about 3 orders of magnitude more toxic than CHCl3. CH3NCl2 concentrations in the ppb range were observed to result from chlorination of surface water or tap water samples collected from several different locations in China. The results suggest that precursors to CH3NCl2 formation are ubiquitous and that CH3NCl2 poses a hazard to public health and the environment and should be considered in disinfection chemistry and water treatment.


Asunto(s)
Desinfectantes , Insecticidas , Contaminantes Químicos del Agua , Purificación del Agua , Carbamatos , China , Cloro , Desinfección , Halogenación
8.
Environ Sci Technol ; 51(19): 11066-11074, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28858500

RESUMEN

Excited triplet states of chromophoric dissolved organic matter (3CDOM*) are critical transient species in environmental photochemistry. In the present study, sorbic amine (2,4-hexadien-1-amine) and sorbic alcohol were employed as new probe molecules for triplet measurements and compared to the results measured from sorbic acid under identical conditions. Unlike sorbic acid, sorbic amine and sorbic alcohol were not directly photolyzed under solar irradiation. Photosensitized isomerization of the probes with the conjugated diene structure could yield four geometrical isomers. The separation and quantitative determination of the geometrical isomers were accomplished using HPLC and high-resolution NMR analyses. When photoirradiated Suwannee River natural organic matter (SRNOM) was employed as a source of 3CDOM*, significantly different photosensitized isomerization rates were observed for the diverse charged probes. The bimolecular reaction rate constants between 3SRNOM* and the probes were calculated as (0.42 ± 0.1) × 109 M-1 s-1 for sorbic acid, (1.1 ± 0.1) × 109 M-1 s-1 for sorbic alcohol, and (5.2 ± 0.4) × 109 M-1 s-1 for sorbic amine, respectively. The average apparent Φtriplet was (0.96 ± 0.03)% based on an irradiation range of 290 to 400 nm. We developed highly selective and efficient probes for triplet determination and elucidated the different reaction behaviors of these conjugated dienes containing different charged substituents within the photochemical energy transfer process.


Asunto(s)
Fotoquímica , Ácido Sórbico , Luz Solar , Iluminación , Ríos
9.
Environ Sci Technol ; 51(20): 11718-11730, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28942634

RESUMEN

Nicotine is a highly toxic tobacco alkaloid that is ubiquitous in wastewater effluent. For the first time, we report the identification of the products and the pathways for the photodegradation of nicotine in an effluent matrix under simulated solar irradiation. Nicotine was found to be degraded by triplet-state organic matter (3OM*), thus indicating that electron transfer is a preferred reaction mechanism. Using the multivariate statistical strategies orthogonal projection to latent structures discriminant analysis (OPLS-DA) and hierarchical clustering, 49 potential transformation products (TPs) of nicotine were successfully extracted from the water matrix via high-resolution ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Overall, 30 TPs, including 4 groups of nonseparated isomeric photo TPs, were identified with various levels of confidence based on the tandem mass spectrometry information on standard compounds and the isotope-labeling method (using rac-nicotine-2',3',3'-D3, rac-nicotine-13CD3, and rac-nicotine-D4) under air-saturated conditions. The pyrrolidine ring of nicotine was found to be the reactive site under sunlight irradiation. Pseudooxynicotine was the main primary TP from nicotine, with a maximum transformation ratio of 64%. Nicotinic acid, cotinine, 3'-hydroxycotinine, and myosmine were the final stable TPs after 72 h of solar irradiation, with yields of 13%, 3%, 5%, and 5%, respectively.


Asunto(s)
Nicotina , Aguas Residuales , Contaminantes Químicos del Agua , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
10.
Environ Sci Technol ; 51(5): 2954-2962, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28151652

RESUMEN

Advanced oxidation processes (AOPs), such as hydroxyl radical (HO•)- and sulfate radical (SO4•-)-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO•- and SO4•--mediated oxidation. In the UV/H2O2 process, a simplified kinetic model involving only steady state concentrations of HO• and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO• in the removal of PPCPs. In the UV/K2S2O8 process, the calculated steady state concentrations of CO3•- and bromine radicals (Br•, Br2•- and BrCl•-) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO4•-, respectively. The kinetic model, involving both SO4•- and CO3•- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO4•- could lead to overestimations of the removal efficiencies of the SO4•--mediated oxidation of nitroimidazoles in wastewater effluents.


Asunto(s)
Peróxido de Hidrógeno , Aguas Residuales , Radical Hidroxilo , Rayos Ultravioleta , Contaminantes Químicos del Agua
11.
Environ Sci Technol ; 51(5): 2738-2747, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28199788

RESUMEN

The photochemical transformation of pharmaceutical and personal care products (PPCPs) in wastewater effluents is an emerging concern for environmental scientists. In the current study, the photodegradation of 29 PPCPs was examined in effluents under simulated solar irradiation. Direct photodegradation, triplet state effluent organic matter (3EfOM*)-mediated and hydroxyl radical (HO•)-mediated degradation are three major pathways in the removal process. With the photodegradation of trace levels of PPCPs, the excitation-emission matrix (EEM) fluorescence intensities of the effluents were also gradually reduced. Therefore, fluorescence peaks have been identified, for the first time, as appropriate surrogates to assess the photodegradation of PPCPs. The humic-like fluorescence peak is linked to direct photolysis-labile PPCPs, such as naproxen, ronidazole, diclofenac, ornidazole, tinidazole, chloramphenicol, flumequine, ciprofloxacin, methadone, and dimetridazole. The tyrosine-like EEM peak is associated with HO•/CO3•--labile PPCPs, such as trimethoprim, ibuprofen, gemfibrozil, atenolol, carbamazepine, and cephalexin. The tryptophan-like peak is associated with 3EfOM*-labile PPCPs, such as clenbuterol, metoprolol, venlafaxine, bisphenol A, propranolol, ractopamine, salbutamol, roxithromycin, clarithromycin, azithromycin, famotidine, terbutaline, and erythromycin. The reduction in EEM fluorescence correlates well with the removal of PPCPs, allowing a model to be constructed. The solar-driven removal of EEM fluorescence was applied to predict the attenuation of 11 PPCPs in five field samples. A close correlation between the predicted results and the experimental results suggests that fluorescence may be a suitable surrogate for monitoring the solar-driven photodegradation of PPCPs in effluents.


Asunto(s)
Fluorescencia , Aguas Residuales , Cosméticos , Radical Hidroxilo , Preparaciones Farmacéuticas , Fotólisis , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua
12.
Environ Sci Technol ; 50(21): 11742-11751, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27709901

RESUMEN

Buckminsterfullerenes (C60) are widely used nanomaterials that are present in surface water. The combination of C60 and humic acid (HA) generates reactive oxygen species (ROS) under solar irradiation, but this process is not well understood. Thus, the present study focused on the photochemical formation of singlet oxygen (1O2), hydroxyl radical (HO•)-like species, superoxide radicals (O2•-), hydrogen peroxide (H2O2), and triplet excited states (3C60*/3HA*) in solutions containing both C60 and HA. The quantum yield coefficients of excited triplet states (fTMP) and apparent quantum yields of ROS were measured and compared to the calculated values, which were based on the conservative mixing model. Although C60 proved to have only a slight impact on the 1O2 formation from HA, C60 played a key role in the inhibition of O2•-. The photochemical formation of H2O2 followed the conservative mixing model due to the reaction of C60•- with HO2•/O2•-, and the biomolecular reaction rate constant has been measured as (7.4 ± 0.6) × 106 M-1 s-1. The apparent fTMP was significantly lower than the calculated value, indicating that the steric effect of HA was significant in the reaction of 3C60* with the TMP probe. In contrast, C60 did not have an effect on the photochemical formation of HO• from HA, suggesting that HO• is elevated from the hydrophilic surface of HA. The aforementioned results may be useful for predicting the photochemical influence of C60 on aqueous environments.


Asunto(s)
Procesos Fotoquímicos , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Radical Hidroxilo/química , Oxígeno Singlete/química
13.
Environ Sci Technol ; 48(6): 3210-7, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24568660

RESUMEN

Cyanogen chloride (CNCl) and trichloramine (NCl3) are important disinfection byproducts in chlorinated swimming pools. However, some unknowns exist regarding the precursors of their formation. In this study, uric acid is shown to be an efficient precursor to formation of CNCl and NCl3. The molar yields of CNCl and NCl3 were observed to be as high as 44% (pH = 6.0, chlorine/precursor molar ratio [Cl/P] = 6.4) and 108% (pH = 7.0, Cl/P = 30), respectively, both being strong functions of Cl/P, pH, and temperature. Analysis of swimming pool water samples, combined with the results of experiments involving chlorination of uric acid, and chlorination of body fluid analog mixtures, indicated that uric acid chlorination may account for a large fraction of CNCl formation in swimming pools. Moreover, given that uric acid introduction to pools is attributable to urination, a voluntary action for most swimmers, these findings indicate important benefits to pool water and air chemistry that could result from improved hygiene habits on the part of swimmers.


Asunto(s)
Cloruros/química , Cloro/química , Cianuros/química , Compuestos de Nitrógeno/química , Piscinas , Ácido Úrico/química , Cloruros/análisis , Cloro/análisis , Cianuros/análisis , Desinfección , Halogenación , Compuestos de Nitrógeno/análisis , Ácido Úrico/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
14.
Water Res ; 201: 117339, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34157574

RESUMEN

Aerucyclamide A (ACA) is an emerging cyanopeptide toxin produced by cyanobacteria, and its transformation pathway has rarely been reported. In the present study, ACA was purified from cyanobacterial extracts, and photodegradation processes were investigated in dissolved organic matter (DOM) solutions. Under simulated solar irradiation, the photodegradation of ACA was dominated by •OH oxidation, accounting for ~72% of the indirect photodegradation. The bimolecular reaction rate constant of ACA with •OH was (6.4 ± 0.2) × 109M - 1s - 1. Our results indicated that the major reactive sites of ACA toward •OH are thiazoline and thiazole moieties. Product analysis via high-resolution mass spectrometry suggested that hydrogen abstraction and gradual hydroxylation are the main photodegradation pathways. The acute toxicity assessment indicate that the products generated in photolysis process did not show any measurable toxicity to Thamnocephalus platyurus. Photodegradation experiments with various DOM-phycocyanin mixtures demonstrated that the half-life of ACA is much longer than that of microcystin-LR.


Asunto(s)
Cianobacterias , Contaminantes Químicos del Agua , Oxidación-Reducción , Péptidos Cíclicos , Fotólisis
15.
J Hazard Mater ; 407: 124851, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33370654

RESUMEN

Ten psychoactive substances (PSs) and metabolites were identified and quantified in 217 surface water samples collected across China to reveal the occurrence, distribution, and potential health risks in Chinese surface waters. The results showed the ubiquitous occurrence of caffeine (CFI), paraxanthine (PXT) and cotinine (CTN) at all the monitored sites, the concentrations of which ranged from not detected to 3460 ng L-1, while the remaining PSs were detected at trace levels (<50 ng L-1). High concentrations of diet-related PSs (CTN, CFI, and PXT) typically occurred in areas with high population densities. Traditional drugs tended to occur in megacities and the illegal manufacturing bases of the illicit drugs. Emerging drugs were found to be very popular across the whole country, with no significant differences among the samples. The risk assessment results suggest that drinking water containing these PS residues posed no potential human health risk in any life stage. However, the age-dependent risk quotients (RQs) of the 5 assessed PSs for the 12 age intervals ranged from < 1.0 × 10-7 to 0.005. In terms of the evaluated life stages, the RQs for early stages (from birth to <2 years) were significantly higher than the RQs for other stages.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , China , Agua Potable/análisis , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
Water Res ; 189: 116633, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221582

RESUMEN

Photodegradation of the natural steroid 17ß-estradiol (E2), an endocrine-disrupting hormone that has been widely detected in aquatic environments, was investigated in wastewater effluents at various pH ranges under simulated solar irradiation. The rate of E2 degradation in the sewage effluents was stable at pH 6.0-7.0 but suddenly increased from pH 8.0-10.0. The second-order reaction rate constants of E2 with 3EfOM* and CO3•- were measured to increase 11.0-fold and 18.0-fold from pH 6.0 to 10.0, respectively. Two main reasons are proposed for this sharp increase. First, the change in the ionization state of E2 made it susceptible to oxidation by triplet-state effluent organic matter (3EfOM*) and carbonate radicals (CO3•-). Second, the steady-state concentration of CO3•- increased with increasing pH. Indirect photolysis was suggested to be the main degradation pathway in the sewage effluents, and 3EfOM* was proposed to play a major role at pH 8.0-9.0, while CO3•- played a significant role at pH 10.0. In this study, EfOM was shown for the first time to inhibit the oxidation of E2 initiated by 3EfOM* and CO3•-. Thus, we suggest that EfOM plays a dual role in the photodegradation of E2: EfOM can not only be activated as 3EfOM* to degrade E2 but also can inhibit the degradation of E2 by reducing the E2 oxidation intermediate back to E2. The estrogenic activity of the photodegradation products was also studied. The in vitro estrogenic activity of E2 solutions decreased approximately as fast as the E2 photodegradation occurred in the effluent water at various pH values, suggesting that solar photodegradation in sewage effluents reduces the risk of endocrine disruption in waters impacted by E2 and subject to continuing inputs. The results of this study are important for predicting the environmental fate of endocrine-disrupting chemicals and developing methods for their removal from aquatic environments.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Estradiol , Fotólisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis
17.
Water Res ; 185: 116256, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32768661

RESUMEN

The removal of pharmaceuticals from wastewater effluents is an emerging concern for environmental scientists and engineers. Ferrate(VI) (FeVIO42-, FeVI) is a promising oxidant and the removal of pharmaceuticals from wastewater effluents has been investigated in this study. Firstly, FeVI oxidation of selected pharmaceuticals was examined by determining the apparent second-order rate constants (kapp) in buffer solutions as a function of pH (5.0-9.5). At pH 8.0, kapp of cimetidine, famotidine, nalidixic acid, ronidazole, dimetridazole, tinidazole, and caffeine are (1.6 ± 0.2)×103, (7.8 ± 0.3)×102, 2.6 ± 0.4, 1.7 ± 0.1, 0.9 ± 0.3, 0.2 ± 0.1, and < 0.1 M-1 s-1, respectively. However, kapp could not be directly employed to predict the removal of pharmaceuticals in the effluents due to the inhibited or enhanced effects of effluent organic matters (EfOM). Therefore, an alternative approach of spectroscopic surrogates was investigated since fluorophore was co-degraded with pharmaceuticals in the wastewater effluents. Particularly, the humic-like fluorescent peak correlated well with the pharmaceutical attenuation. The relationship of the reduction of fluorescence and the removal of pharmaceuticals could be described through a universal equation: [Formula: see text] . The practical utility of the fluorescence surrogate was validated by applying to field samples. Monitoring the changes of the fluorescence surrogate provides a promising, rapid, and inexpensive method for estimating the degradation of pharmaceuticals during FeVI treatment of wastewater effluents.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Purificación del Agua , Fluorescencia , Hierro , Cinética , Oxidación-Reducción , Aguas Residuales , Contaminantes Químicos del Agua/análisis
18.
Sci Total Environ ; 696: 133826, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31450049

RESUMEN

Pharmaceutical and personal care products (PPCPs) are a group of emerging contaminants that have frequently been detected in aqueous environments. Phototransformation driven by solar irradiation is one of the most important natural processes for the elimination of PPCPs. In this study, primidone (PMD) was chosen as a model "photorefractory" compound. A series of experiments were conducted to assess if reactive intermediates (RIs), such as hydroxyl radical (HO), singlet oxygen (1O2), and triplet states of dissolved organic matter (3DOM⁎), inhibited or enhanced the photochemical transformation of PMD under simulated solar irradiation. The results indicate that HO plays a key role in the photodegradation of PMD and that dissolved oxygen can affect the degradation rate of PMD by promoting HO formation. Our results demonstrated that PMD can not only react with free HO (HO-free) but also react with lower-energy hydroxylation agents (HO-like). The contributions of HO-free and HO-like to PMD degradation in various dissolved organic matter (DOM) solutions were estimated by a methane-quenching experiment. The results indicated that the HO-like species were important in the photodegradation of "photorefractory" compounds. The bimolecular reaction rate constant of the reaction of free HO with PMD was measured as (5.21 ±â€¯0.02) × 109 M-1 s-1 by using electron pulse radiolysis. Furthermore, PMD was used as a probe to estimate the steady-state concentration of HO-free in various DOM solutions. Using the multivariate statistical strategies of orthogonal projection to latent structures discriminant analysis (OPLS-DA) and hierarchical clustering, 28 photochemical transformation products (TPs) of PMD were successfully identified from the DOM matrix.


Asunto(s)
Cosméticos/análisis , Fotólisis , Primidona/análisis , Contaminantes Químicos del Agua/análisis , Radical Hidroxilo , Oxígeno Singlete
19.
Environ Pollut ; 255(Pt 2): 113303, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31585406

RESUMEN

Simultaneous quantification of short-, medium-, and long-chain chlorinated paraffins (CPs) in environmental matrices is challenging and has received much attention from environmental chemists. In this study, ammonium-chloride-enhanced liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was developed for the first time to quantify CPs in sediments and aqueous samples. Three ionization sources, including atmospheric pressure chemical ionization (APCI), electrospray ionization (ESI), and thermal-assisted-ESI, were employed to examine the performance of ammonium chloride as the chloride ion supply reagent in comparison with traditional chloride ion supply reagent, dichloromethane. Ammonium chloride can be easily used with reversed-phase liquid chromatography (LC), whereas dichloromethane is not compatible with aqueous LC mobile phase. Furthermore, other anion-supply reagents, such as ammonium formate, ammonium acetate, and ammonium bromide, were also tested. It was concluded that the adducts of the CPs with the anions were reversible and could partially dissociate into deprotonated CP ions. The yield of deprotonated CP ions was associated with the gas-phase basicity of the deprotonated CP ions and the corresponding anions. Furthermore, collision-induced dissociation curves were drawn to quantify the stability of anionic CP adducts. The ammonium-chloride-enhanced LC-HRMS was further employed for identifying CPs in sediment samples and coupled with an online SPE method for detecting CPs in aqueous samples. This study may significantly contribute to the qualification and quantification of CPs in environmental matrices.


Asunto(s)
Cloruro de Amonio/química , Cromatografía Liquida/métodos , Parafina/química , Espectrometría de Masas/métodos , Parafina/análisis
20.
Water Res ; 161: 288-296, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31202115

RESUMEN

The carbonate radical (CO3•-) is a strong oxidative radical that is generated via the reactions of HCO3-/CO32- with hydroxyl radical (HO•) or triplet states of dissolved organic matter (3DOM∗) in sunlit surface water. The bimolecular reaction rate constants of CO3•- with various DOM isolates ( [Formula: see text] ) were calculated as 15-239 (mg of C/L)-1 s-1 and were correlate to the bulk DOM properties, such as the content of phenolic moieties, the specific UV absorbance (SUVA), the E2/E3 value, and the fluorescence index (FI). The spectroscopic E2/E3 values was found to strongly correlated (R2 = 0.93) with [Formula: see text] , and an empirical equation was established. Our results also demonstrate that CO3•- is involved in the photobleaching of dissolved organic matter (DOM) and in particular reacts with electron-donor moieties, leading to faster decay rates at long wavelengths of UV-vis absorption. Furthermore, a model was developed to calculate the steady-state concentrations of CO3•- during DOM photobleaching. These results allow us to estimate the reactivity of DOM with CO3•- and to evaluate the role of CO3•- in sunlit surface water. It will also allow a better assessment of the concentration and utilization of CO3•- during the application of advanced oxidation processes.


Asunto(s)
Carbonatos , Procesos Fotoquímicos , Radical Hidroxilo , Oxidación-Reducción , Fotoblanqueo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA