Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 102(14): 6454-6463, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35561106

RESUMEN

BACKGROUND: In this paper, the effects of different succinic anhydride (SA) additions on the flexibility of soy protein isolate (SPI) were investigated, and changes in protein conformation and interfacial functional properties were measured. The structure-effect relationship between conformation, flexibility, and interfacial functional properties was established. RESULTS: SPI was bound to SA through disulfide bonds, and the zeta potential was reduced. The ß-sheet content decreased, the disordered structure increased, and there were changes in tertiary structure and microstructure. The surface hydrophobicity, disulfide bond content, and solution turbidity were reduced to 5063, 1.0967 µmol g-1 , and 0.0036 µmol g-1 respectively. The best flexibility of SPI (0.3977) and interfacial functional properties were obtained when the mass ratio of SA/SPI was 15%. Correlation analysis showed a highly significant positive correlation (P < 0.01) between flexibility and emulsification and foaming properties, with correlation coefficients of 0.960 and 0.942 for flexibility with emulsifying activity and emulsion stability respectively, and 0.972 and 0.929 for flexibility with foaming capacity and foaming stability respectively. CONCLUSION: The results suggest that succinylation-induced conformational changes of SPI improved its interfacial functional properties by changing its flexibility. These results provide theoretical guidelines for the development and application of highly emulsifiable and stable soy protein products utilizing succinylation. © 2022 Society of Chemical Industry.


Asunto(s)
Proteínas de Soja , Anhídridos Succínicos , Disulfuros/química , Emulsiones/química , Conformación Proteica , Proteínas de Soja/química , Glycine max
2.
Ultrason Sonochem ; 105: 106864, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581796

RESUMEN

The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 µmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.


Asunto(s)
Inulina , Proteínas de Soja , Inulina/química , Proteínas de Soja/química , Ondas Ultrasónicas , Glycine max/química , Sonicación
3.
Carbohydr Polym ; 317: 121101, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364963

RESUMEN

The effect of the cross-linking mechanism and functional properties of soy glycinin (11S)-potato starch (PS) complexes was investigated in this study. The results showed that the binding effecting and spatial network structure of 11S-PS complexes via heated-induced cross-linking were adjusted by biopolymer ratios. In particular, 11S-PS complexes with the biopolymer ratios of 2:15, had a strongest intermolecular interaction through hydrogen bonds and hydrophobic force. Moreover, 11S-PS complexes at the biopolymer ratios of 2:15 exhibited a finer three-dimensional network structure, which was used as film-forming solution to enhance the barrier performance and mitigate the exposure to the environment. In addition, the 11S-PS complexes coating was effective in moderating the loss of nutrients, thereby extending their storage life in truss tomato preservation experiments. This study provides helpful to insights into the cross-linking mechanism of the 11S-PS complexes and the potential application of food-grade biopolymer composite coatings in food preservation.


Asunto(s)
Globulinas , Solanum tuberosum , Solanum tuberosum/metabolismo , Proteínas de Soja/química , Globulinas/química , Globulinas/metabolismo , Almidón
4.
Ultrason Sonochem ; 95: 106412, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37086535

RESUMEN

In this work, emulsion-filled gels were prepared from natural and pH-shifting combined with ultrasound ß-conglycinin (7S) as emulsifiers. The emulsifier modification and emulsion concentrations (5, 10, 15, 20 wt%) were evaluated on the structural and ß-carotene release properties of the gels. Compared to the 7S hydrogel, the emulsion-filled gels exhibited better water-holding and textural properties. The 7S modification and the increase in emulsion concentration resulted in altered water distribution and improved microstructure and rheological properties of the emulsion-filled gels. The dense and homogeneous gel network was formed at an emulsion content of 15 wt%. The gels were regulated by different release kinetics in a simulated gastrointestinal environment. M-15 showed the highest bioaccessibility and chemical stability (72.25% and 89.87%) with good slow-release properties of ß-carotene. These results will guide the development of encapsulated delivery systems for gel food products.


Asunto(s)
Emulsionantes , beta Caroteno , Emulsiones/química , Geles/química , Hidrogeles , Concentración de Iones de Hidrógeno , Agua/química
5.
Int J Biol Macromol ; 212: 536-546, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618093

RESUMEN

Co-precipitation was a novel method for improving the functional properties of pure proteins. To investigate the mechanism of this effect, different protein proportions of soy-wheat co-precipitated protein were extracted by isoelectric point co-precipitation. Soy protein isolate (SPI) was mainly linked to wheat protein (WP) through non-covalent forces and disulfide bonds as determined by circular dichroism spectroscopy, disulfide bond, protein fraction extraction, interaction, and molecular modeling. Amino acid analysis indicated that co-precipitation could increase wheat lysine content. Furthermore, co-precipitation improved multiple functional properties of pure protein, and the emulsifying and foaming properties of the composite system with a mass ratio of 7:3 outperformed those of other systems. At the same time, correlation analysis revealed that protein structure and intermolecular forces significantly affected its functional properties. This study provided some useful and interesting information for the development and application of protein-protein systems with diverse functional properties.


Asunto(s)
Proteínas de Soja , Triticum , Disulfuros , Punto Isoeléctrico , Proteínas de Soja/química , Triticum/química
6.
Food Chem ; 384: 132507, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217462

RESUMEN

Understanding the molecular mechanism behind protein-polyphenol interactions is critical for the application of protein-polyphenol compounds in foods. The purpose of this research was to investigate the non-covalent interaction mechanism between soy protein isolate (SPI) and catechin and its effect on protein conformation. We observed that particle size, ζ-potential, and polyphenol bound equivalents of SPI increased significantly after non-covalent modification with catechin. These changes caused SPI to aggregate and form a network-like structure. Fourier transform infrared spectroscopy (FTIR) indicated that increased catechin concentrations caused SPI to become looser and more disordered as its α-helix and ß-sheet transformed into ß-turn and random coil. Furthermore, internal structure of SPI was opened and its hydrophobic groups were exposed to a polar environment, which was demonstrated by decreased surface hydrophobicity. Thermodynamic analysis and molecular docking results showed that the main forces present between SPI and catechin were hydrophobic interactions and hydrogen bonds.


Asunto(s)
Catequina , Proteínas de Soja , Catequina/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Polifenoles , Conformación Proteica , Conformación Proteica en Hélice alfa , Proteínas de Soja/química
7.
Ultrason Sonochem ; 90: 106186, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36201932

RESUMEN

This present work underlines the effect of pH-shifting at pH 2 and pH 12 individually or combined with ultrasound treatment to modify the molecular structure of ß-conglycinin (7S) on its emulsifying properties and stability. Fourier transform infrared (FTIR) spectroscopy and intrinsic fluorescence spectroscopy showed that pH-shifting improves the molecular structure of 7S, while ultrasound further promotes structural changes. In particular, the pH-shifting at pH 12 combined with ultrasound treatment (U-7S-12) resulted in more significant changes than the pH-shifting at pH 2 combined with ultrasound (U-7S-2). U-7S-12 showed a significant reduction in protein particle size from 152 to 34.77 nm and a relatively smooth protein surface compared to 7S. The protein had the highest surface hydrophobicity and flexibility at 81,560.0 and 0.45, respectively, and the free sulfhydryl content from 1.57 to 2.02 µmol/g. In addition, we characterized the emulsions prepared after 7S treatment. The single or combined treatment increased the interfacial protein adsorption of the samples, which showed lower viscosity and shear stress compared to 7S. The U-7S-12 emulsion exhibited the highest emulsifying properties and was more stable than other emulsions under creaming, heating, and freeze-thaw conditions. In summary, the concerted action of pH-shifting and ultrasound can modify the structure, and combined alkaline pH-shifting and ultrasound treatment can further improve the emulsifying properties and stability of 7S.


Asunto(s)
Globulinas , Globulinas/química , Proteínas de Almacenamiento de Semillas/química , Proteínas de Soja/química , Emulsiones/química , Concentración de Iones de Hidrógeno
8.
Foods ; 11(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35010146

RESUMEN

This research underlines the potential of alginate multilayered gel microspheres for the layered encapsulation and the simultaneous delivery of vitamin B2 (VB) and ß-carotene (BC). Chitosan was used to improve the stability and controlled release ability of alginate-based gel microspheres. It was shown that a clear multilayered structure possessed the characteristics of pH response, and excellent thermal stability. The sodium alginate concentration and the number of layers had notable effects on mechanical properties and particle size of gel microspheres. Fourier-transform infrared spectroscopy and X-ray diffraction analyses further proved that VB and BC were encapsulated within the gel microspheres. Compared with the three-layer VB-loaded gel microspheres, the total release of VB from the three-layer VB and BC-loaded gel decreased from 93.23% to 85.58%. The total release of BC from the three-layer VB and BC-loaded gel increased from 66.11% to 69.24% compared with three-layer BC-loaded gel. The simultaneous encapsulation of VB and BC in multilayered gel microspheres can markedly improve their bioaccessibility and bioavailability. These results showed the multilayer gel microspheres synthesized herein have potential for applications in the layered encapsulation and simultaneous delivery of various bioactive substances to the intestinal tract.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA