Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 37(12): e23319, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010918

RESUMEN

Glutamine synthetase (GS) is a crucial enzyme involved in de novo synthesis of glutamine and participates in several biological processes, including nitrogen metabolism, nucleotide synthesis, and amino acid synthesis. Post-translational modification makes GS more adaptable to the needs of cells, and acetylation modification of GS at double sites has attracted considerable attention. Despite very intensive research, how SUMOylation affects GS activity at a molecular level remains unclear. Here, we report that previously undiscovered GS SUMOylation which is deficient mutant K372R of GS exhibits more bluntness under glutamine starvation. Mechanistically, glutamine deprivation triggers the GS SUMOylation, and this SUMOylation impaired the protein stability of GS, within a concomitant decrease in enzymatic activity. In addition, we identified SAE1, Ubc9, and PIAS1 as the assembly enzymes of GS SUMOylation respectively. Furthermore, Senp1/2 functions as a SUMO-specific protease to reverse the SUMOylation of GS. This study provides the first evidence that SUMOylation serves as a regulatory mechanism for determining the GS enzymatic activity, contributing to understanding the GS regulation roles in various cellular and pathophysiological processes.


Asunto(s)
Sumoilación , Enzimas Ubiquitina-Conjugadoras , Enzimas Ubiquitina-Conjugadoras/metabolismo , Lisina/metabolismo , Glutamina/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo
2.
Biomed Microdevices ; 25(2): 12, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36933064

RESUMEN

Polymerase chain reaction (PCR) has become a powerful tool for detecting various diseases due to its high sensitivity and specificity. However, the long thermocycling time and the bulky system have limited the application of PCR devices in Point-of-care testing. Herein, we have proposed an efficient, low-cost, and hand-hold PCR microdevice, mainly including a control module based on water-cooling technology and an amplification module fabricated by 3D printing. The whole device is tiny and can be easily hand-held with a size of about 110 mm × 100 mm × 40 mm and a weight of about 300 g at a low cost of about $170.83. Based on the water-cooling technology, the device can efficiently perform 30 thermal cycles within 46 min at a heating/cooling rate of 4.0/8.1 ℃/s. To test our instrument, plasmid DNA dilutions were amplified with this device; the results demonstrate successful nucleic acid amplification of the plasmid DNA and exhibit the promise of this device for Point-of-care testing.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Impresión Tridimensional , Reacción en Cadena de la Polimerasa , ADN/genética
3.
J Zhejiang Univ Sci B ; 24(5): 397-405, 2023 May 15.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-37190889

RESUMEN

Mammalian target of rapamycin (mTOR) controls cellular anabolism, and mTOR signaling is hyperactive in most cancer cells. As a result, inhibition of mTOR signaling benefits cancer patients. Rapamycin is a US Food and Drug Administration (FDA)-approved drug, a specific mTOR complex 1 (mTORC1) inhibitor, for the treatment of several different types of cancer. However, rapamycin is reported to inhibit cancer growth rather than induce apoptosis. Pyruvate dehydrogenase complex (PDHc) is the gatekeeper for mitochondrial pyruvate oxidation. PDHc inactivation has been observed in a number of cancer cells, and this alteration protects cancer cells from senescence and nicotinamide adenine dinucleotide (NAD+|) exhaustion. In this paper, we describe our finding that rapamycin treatment promotes pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) phosphorylation and leads to PDHc inactivation dependent on mTOR signaling inhibition in cells. This inactivation reduces the sensitivity of cancer cells' response to rapamycin. As a result, rebooting PDHc activity with dichloroacetic acid (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, promotes cancer cells' susceptibility to rapamycin treatment in vitro and in vivo.


Asunto(s)
Neoplasias , Sirolimus , Humanos , Sirolimus/farmacología , Ácido Dicloroacético/farmacología , Complejo Piruvato Deshidrogenasa , Serina-Treonina Quinasas TOR , Diana Mecanicista del Complejo 1 de la Rapamicina , Neoplasias/tratamiento farmacológico
4.
Front Oncol ; 11: 755273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096569

RESUMEN

BACKGROUND: Given the difficulty of accurately determining the central lymph node metastasis (CLNM) status of patients with clinically node-negative (cN0) papillary thyroid carcinoma (PTC) before surgery, this study aims to combine real-time elastography (RTE) and conventional ultrasound (US) features with clinical features. The information is combined to construct and verify the nomogram to foresee the risk of CLNM in patients with cN0 PTC and to develop a network-based nomogram. METHODS: From January 2018 to February 2020, 1,157 consecutive cases of cN0 PTC after thyroidectomy and central compartment neck dissection were retrospectively analyzed. The patients were indiscriminately allocated (2:1) to a training cohort (771 patients) and validation cohort (386 patients). Multivariate logistic regression analysis of US characteristics and clinical information in the training cohort was performed to screen for CLNM risk predictors. RTE data were included to construct prediction model 1 but were excluded when constructing model 2. DeLong's test was used to select a forecast model with better receiver operator characteristic curve performance to establish a web-based nomogram. The clinical applicability, discrimination, and calibration of the preferable prediction model were assessed. RESULTS: Multivariate regression analysis showed that age, sex, tumor size, bilateral tumors, the number of tumor contacting surfaces, chronic lymphocytic thyroiditis, and RTE were risk predictors of CLNM in cN0 PTC patients, which constituted prediction model 1. Model 2 included the first six risk predictors. Comparison of the areas under the curves of the two models showed that model 1 had better prediction performance (training set 0.798 vs. 0.733, validation set 0.792 vs. 0.715, p < 0.001) and good discrimination and calibration. RTE contributed significantly to the performance of the prediction model. Decision curve analysis showed that patients could obtain good net benefits with the application of model 1. CONCLUSION: A noninvasive web-based nomogram combining US characteristics and clinical risk factors was developed in the research. RTE could improve the prediction accuracy of the model. The dynamic nomogram has good performance in predicting the probability of CLNM in cN0 PTC patients.

5.
Gland Surg ; 9(4): 956-967, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32953605

RESUMEN

BACKGROUND: Preoperative prediction of central lymph node metastasis (CLNM) holds significant value in determining a patient's suitability for surgical resection and the need for adjuvant treatment, thereby contributing to better therapeutic strategies. This study aimed to build and confirm a nomogram that integrates ultrasound (US) characteristics with clinical features to predict CLNM in patients with papillary thyroid carcinoma (PTC) preoperatively. METHODS: The prediction model was set up with a training dataset that included 512 patients with histopathologically confirmed PTC. The least absolute shrinkage and selection operator (LASSO) regression method was applied to select US features in the development cohort. The patients' US characteristics and clinical features were incorporated into a multivariate logistic regression analysis to develop the nomogram. The clinical feasibility, calibration, and discriminatory ability of the nomogram were evaluated in an independent validation cohort of 306 patients. RESULTS: Age, sex, tumor size, multiple tumors, and US-based CLNM status were included as independent predictors in the personalized nomogram. The nomogram showed good calibration and discrimination in the training and validation datasets. The addition of the BRAF V600E mutation status did not improve the performance of the nomogram. The decision curve analysis showed the nomogram to have clinical feasibility. CONCLUSIONS: A nomogram that integrates US characteristics with patients' clinical features was built. This US-based nomogram can be expediently applied to promote the personalized preoperative prediction of CLNM and to develop surgical strategies, such as tailored central compartment neck dissection, in patients with PTC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA