Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Genomics ; 24(1): 119, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927268

RESUMEN

BACKGROUND: HR (hairy root) has emerged as a valuable tissue for the rapid characterization of plant gene function and enzyme activity in vivo. AhGLK1 (Arachis hypogaea L. golden2-like 1) is known to play a role in post-drought recovery. However, it is unclear (a) whether HR has properties that are distinct from those of PR (primary root); and (b) which gene networks are regulated by AhGLK1 in response to drought stress and recovery in peanut. RESULTS: We found that cells of the root tip cortex were larger in HR than in PR, while a total of 850 differentially expressed genes (DEGs) were identified in HR compared to PR. Eighty-eight of these DEGs, relating to chlorophyll and photosynthesis, were upregulated in HR. In addition, AhGLK1-OX (AhGLK1-overexpressing) HR showed a green phenotype, and had a higher relative water content than 35 S::eGFP (control) HR during drought stress. RNA-seq analysis showed that 74 DEGs involved both in the drought response and the post-drought recovery process were significantly enriched in the galactose metabolism pathway. GO terms enrichment analysis revealed that 59.19%, 29.79% and 17.02% of the DEGs mapped to the 'biological process' (BP), 'molecular function' (MF) and 'cellular component' (CC) domains, respectively. Furthermore, 20 DEGs involved in post-drought recovery were uniquely expressed in AhGLK1-OX HR and were significantly enriched in the porphyrin metabolism pathway. GO analysis showed that 42.42%, 30.30% and 27.28% of DEGs could be assigned to the BP, MF and CC domains, respectively. Transcription factors including bHLH and MYB family members may play a key role during drought stress and recovery. CONCLUSION: Our data reveal that HR has some of the characteristics of leaves, indicating that HR is suitable for studying genes that are mainly expressed in leaves. The RNA-seq results are consistent with previous studies that show chlorophyll synthesis and photosynthesis to be critical for the role of AhGLK1 in improving post-drought recovery growth in peanut. These findings provide in-depth insights that will be of great utility for the exploration of candidate gene functions in relation to drought tolerance and/or post-drought recovery ability in peanut.


Asunto(s)
Arachis , Sequías , Arachis/genética , Arachis/metabolismo , Resistencia a la Sequía , Perfilación de la Expresión Génica/métodos , Clorofila/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
2.
Fish Shellfish Immunol ; 139: 108912, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37353063

RESUMEN

Temperature is an essential environmental factor for the survival of aquatic animals. Low temperature stress can induce mitochondria to produce excessive ROS and free radicals, and destroy homeostasis. c-Jun N-terminal kinase (JNK) is involved in regulating various physiological processes, including inflammatory responses, cell cycle, reproduction, and apoptosis. Here, we investigated the mechanism of ROS/JNK pathway under low temperature stress both in vitro and in vivo. In this study, transcriptome analysis revealed that apoptosis, autophagy, calcium channel, and antioxidant were involved in the mediation of low temperature tolerance in Pacific white shrimp (penaeus vannamei). PvJNK was activated in response to low temperature stress. Treatments with different temperature caused oxidative stress as demonstrated by increased intensity of the ROS indicator H2DCF-DA, and induced apoptosis as confirmed by indicator FITC. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated low temperature induced apoptosis, and inhibited the expression of PvJNK. In addition, we demonstrate that mediator PvJNK translocated to nuclear through interacting with PvRheb. By using flow cytometry, inhibiting PvJNK can increase the expression of apoptosis related genes, accelerate tissue damage, and induce ROS and cell apoptosis. The ultimate inhibition of PvJNK accelerates the mortality of shrimp under low temperature stress. Overall, these findings suggest that during low temperature stress, PvJNK was activated by ROS to regulates apoptosis via interacting with PvRheb to promote PvJNK into the nucleus and to improve low temperature tolerance of shrimp.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Penaeidae , Animales , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Especies Reactivas de Oxígeno/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Temperatura , Apoptosis/genética
3.
Fish Shellfish Immunol ; 126: 187-196, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35588908

RESUMEN

MYC proto-oncogene (MYC), a first oncogenic nuclear transcription factor isolated from the human genome, belongs to the helix loop helix/leucine zipper protein family (bHLHzip). MYC plays an important part in the process of various physiological and biochemical of vertebrate, such as cell growth, proliferation, cycle, and autophagy. However, its molecular regulation mechanism and function in invertebrates are still unclear. In this study, a novel transcription factor MYC gene was screened, cloned, and characterized from Penaeus vannamei. The open reading frame of PvMYC was 1593bp, encode a polypeptide of 530 amino acids with molecular weight of 58.5 kDa, and a theoretical PI of 5.75. The results of tissue distribution showed that PvMYC was constitutively expressed in all detected tissues, and highest expression in hepatopancreas. The expression level of PvMYC up-regulated significantly and responded to low temperature stress by nuclear ectopic after low temperature stress. Overexpression of PvMYC in shrimp hemocytes negatively regulated the expression of Beclin-1 and reduced the conversion from LC3I to LC3II, yet p62 was decreased significantly. Meanwhile, RAPA eliminated the inhibition of autophagy caused by overexpression of PvMYC. ROS levels and autophagy flux showed the similar trend under low temperature stress after silencing PvMYC. The expression levels of Beclin-1, key ATG gene and LC3II increased significantly, while p62 decreased significantly under the same conditions. In addition, the Total hemocyte count (THC) decreased sharply, and accelerated the injury of hepatopancreas under low temperature stress after silencing PvMYC. Collectively, these results suggest that PvMYC has vital role in the cold adaptation mechanism of P. vannamei by negatively regulating autophagy.


Asunto(s)
Penaeidae , Animales , Autofagia/genética , Beclina-1 , Hepatopáncreas , Penaeidae/genética , Factores de Transcripción
4.
Fish Shellfish Immunol ; 127: 1061-1069, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35840051

RESUMEN

UCP4, as an uncoupling protein in mitochondrial intima, is closely related to the resistance to oxidative stress and the function of mitochondria. However, whether and how its antioxidant capacity also works in crustaceans has not been reported in detail. This study showed that the expression of PvUCP4 was negatively correlated with the expression of pva-miR-144. The content of reactive oxygen species (ROS), ATP, and apoptosis was significantly increased, while the mitochondrial membrane potential (MMP) was seriously depolarized, Edema, vacuolation, and ambiguity of cristae and membrane were observed clearly in mitochondria after the knockdown of PvUCP4 induced by V. alginolyticus. The sharp drop in THC and severe damage in the hepatopancreas were all due to the knockout of PvUCP4 under the stress of V. alginolyticus. The co-transfection of pva-miR-144 and PvUCP4 could partially recover MMP compared with the abnormal expression of pva-miR-144. Similarly, co-transfection of pva-miR-144 and PvUCP4 could partially eliminate apoptosis compared with the abnormal expression of pva-miR-144. In addition, PvUCP4 3'-UTR has a pva-miR-144 predicted binding site in 1417-1428, which also was confirmed by the dual luciferase reporter assay. By the way, the results of ROS, MMP, and apoptosis showed that PvDJ-1 regulated the expression of PvUCP4 through PvNF-κB. Altogether, these results indicated that PvUCP4 has the antioxidant function of resisting oxidation reaction and weakening oxidative damage, to protect the normal operation of mitochondrial function and maintaining the cell homeostasis in shrimp.


Asunto(s)
MicroARNs , Penaeidae , Animales , Antioxidantes/metabolismo , Homeostasis , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Fish Shellfish Immunol ; 122: 48-56, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35077870

RESUMEN

TBC domain family 7 (TBC1D7) is one of the subunits of tuberous sclerosis complex (TSC) and an important regulator of autophagosome biogenesis. However, the function of TBC1D7 is not fully understood in crustaceans. In the present study, TBC1D7 was identified from Penaeus vannamei. The complete coding sequence of PvTBC1D7 was of 960 bp encoding a predicted polypeptide of 319 amino acids with one conserved TBC domain, which shared high similarity with TBC1D7 of that other species. The mRNA of PvTBC1D7 was highly expressed in hemocyte and hepatopancreas, and the PvTBC1D7 protein was localized specifically in the cytoplasm of hemocyte of shrimp. Besides, PvTBC1D7 was co-localized with PvTSC1 in the cytoplasm of shrimp, indicating that there might existed a binding relationship between PvTBC1D7 and PvTSC1. During the ammonia nitrogen stress, the mRNA transcripts of PvTBC1D7 were significantly upregulated in hemocyte, hepatopancreas, and gill. Functionally, overexpression of PvTBC1D7 in vitro restored the inhibition to autophagy caused by chloroquine (CLQ) and increased the autophagy level, while the silencing of PvTBC1D7 could inhibit the autophagy. More importantly, after interfering with PvTBC1D7, the autophagy level decreased significantly both in hepatopancreas and hemocyte of P. vannamei, the mRNA expression of PvmTOR was increased remarkably with the significantly decrease of autophagy-related genes (PvATG12 and PvATG14). And the reduction of PvTBC1D7 remarkably exacerbated the damage of hepatopancreas, increased the accumulation of ROS, and reduced the survival proportion of shrimp under ammonia nitrogen stress. Altogether, these results indicated that PvTBC1D7 might positively regulate the autophagy by stabilizing the negative regulation of mTOR by TSC complex, reduce the oxidative stress damage and improve shrimp ammonia nitrogen tolerance.


Asunto(s)
Penaeidae , Amoníaco/farmacología , Animales , Autofagia , Nitrógeno , Estrés Fisiológico , Regulación hacia Arriba
6.
J Fish Dis ; 44(8): 1191-1200, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34061996

RESUMEN

Water temperature is one of the most common physiological stressors in aquaculture. Previous studies demonstrate that organisms require miRNA activity for survival in various unfavourable environmental conditions. However, the detailed role of miRNA in response to low-temperature stress is still unclear. This study was conducted to construct a comprehensive miRNA dataset for the Penaeus vannamei after low-temperature stress. A total of 329 known miRNAs and 60 putative novel miRNAs were identified. Among them, 17 miRNAs were identified with the most significant differences, and they were found to be involved in stimulation or stress processes. The main enriched target pathways of the 17 miRNAs were the Hippo signalling pathway, autophagy, apoptosis and MAPK signalling. In addition, all the 17 miRNAs identified were up-regulated, suggesting that miRNA by inhibiting the expression of target genes constitutes an effective strategy for Penaeus vannamei to cope with low-temperature stress. The 35-putative target of the 17 miRNAs was related to apoptosis and autophagy-related proteins, such as Pxt, DRAM2, cytochrome c, ATG2B, JNK, ATG4 and API5. The analysis of miRNA expression profiles contributes to the understanding of the molecular mechanisms of low-temperature tolerance in Penaeus vannamei. This study's findings enrich current miRNA resources and offer the possibility to validate the involvement of 17 miRNAs in the response of shrimp to low-temperature stress.


Asunto(s)
Adaptación Fisiológica , Frío/efectos adversos , MicroARNs/metabolismo , Penaeidae/fisiología , Estrés Fisiológico , Animales , Penaeidae/genética , Distribución Aleatoria
7.
Ecotoxicol Environ Saf ; 228: 112989, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34794028

RESUMEN

Ficus hirta Vahl. has been reported to have hepatoprotective, antitumor, antibacterial functions, and is used to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Ammonia nitrogen is one of the most common environmental stress factors in aquaculture. Long-term exposure to high concentrations of ammonia nitrogen can induce oxidative stress and increase the risk of infections. However, whether Ficus hirta Vahl. has effect on ammonia nitrogen stress is unclear. In present study we report that Ficus hirta Vahl. improves the activity of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) of shrimp and decreases shrimp mortality caused by ammonia nitrogen stress. It is demonstrated that miR-2765 is negatively regulate the antioxidant capacity. We find that SOD was a direct target gene of miR-2765. MiR-2765 can bind to 3'-untranslated region (3'-UTR) of SOD to inhibit its transcription. Furthermore, Ficus hirta Vahl. down-regulates miR-2765 to activate the antioxidant capacity to alleviate the damage caused by ammonia nitrogen stress. Interestingly, overexpression of miR-2765 could attenuate the protective effect of Ficus hirta Vahl. on shrimp under ammonia nitrogen stress. These data indicate that Ficus hirta Vahl. alleviates the damage of ammonia nitrogen stress in shrimp by repressing miR-2765 and activating the antioxidant enzyme system. This study will provide a theoretical basis and a new perspective for assessing the toxicity mechanism of ammonia nitrogen in the process of farming on shrimp.

8.
Ecotoxicol Environ Saf ; 225: 112774, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34536791

RESUMEN

MicroRNAs (miRNAs) are critical post-transcriptional regulators, which play a crucial role in resistance to adverse environmental stress by regulating autophagy. However, the mechanism of miRNA involved in the autophagy regulation of shrimp under ammonia nitrogen stress is still limited. In the present study, ammonia nitrogen could induce hepatopancreas injury and oxidative stress of P. vannamei, and significantly increase the content of ROS in hemocytes by flow cytometry. Simultaneously, it is accompanied by autophagy occurred in the hemocytes and hepatopancreas. Furthermore, the qRT-PCR analysis revealed that the expression of pva-miR-252 in P. vannamei decreased significantly after ammonia nitrogen stress, and pva-miR-252 negatively regulated PvPI3K by binding to 3'UTR of PvPI3K by double-luciferase assay. Pva-miR-252 overexpression could significantly increase the level of autophagy, and restore the autophagy inhibition caused by Chloroquine in vitro , whereas silencing of pva-miR-252 resulted in the opposite effect. More importantly, overexpression of pva-miR-252 could enhance the activity of antioxidant enzymes and reduced the production of ROS of shrimp under ammonia nitrogen stress. In conclusion, pva-miR-252 could positively regulate autophagy through PvPI3K and improve the antioxidant enzyme activity of P. vannamei under ammonia nitrogen stress, and our study provides a novel theoretical molecular mechanism for further understanding the shrimp cope with a high ammonia nitrogen environment.


Asunto(s)
MicroARNs , Penaeidae , Amoníaco/toxicidad , Animales , Autofagia , MicroARNs/genética , Nitrógeno , Estrés Oxidativo , Penaeidae/genética
9.
Fish Shellfish Immunol ; 106: 404-409, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32800982

RESUMEN

Epinephelus coioides is an important economic culture marine fish and is susceptible to various pathogenic diseases. Increasingly evidences showed that miRNAs participated in the regulation of the cell proliferation, differentiation and immune response. MiR-122 has been reported to play an essential role in immune response by triggering an inflammatory reaction. However, the function of miR-122 in response to bacterial infection is unclear in Epinephelus coioides. Herein, we report that miR-122 is involved in response to Aeromonas hydrophila infection of grouper spleen cells (GS). IL-15, IL-6 and IL-1ß are inhibited in overexpression miR-122 GS cells, while induced in silence miR-122 GS cells. In addition, IL-15 is predicted to be the target gene of miR-122, which is further confirmed by LUC. Taken together, we propose that miR-122 regulates the immune response to bacterial infection by triggering IL-15.


Asunto(s)
Lubina/genética , Lubina/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Interleucina-15/genética , Interleucina-15/inmunología , Aeromonas hydrophila/fisiología , Animales , Secuencia de Bases , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Interleucina-15/química , MicroARNs/genética , MicroARNs/metabolismo , Filogenia , Alineación de Secuencia/veterinaria , Bazo/inmunología
10.
Fish Shellfish Immunol ; 106: 656-665, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32858183

RESUMEN

p70S6K is involved in cellular response, such as tumor metastases, the immune response and tissue repair in vertebrates. The role of p70S6K in these physiological processes in crustaceans remains, however, unknown. In this study, the Lvp70S6K was identified, containing a 5' UTR of 294 bp, an ORF of 1494 bp ad a 3' UTR of 211 bp, encoding 497 amino acids with a theoretical molecular weight of 70 kDa and an estimated isoelectric point of (pI) of 5.16. The multiple alignment found that Lvp70S6K was highly homologous with other invertebrates. Lvp70S6K mRNA was detected in all the tested tissues and the Lvp70S6K expression levels was significantly down-regulated and reached the lowest level (0.44-fold, p < 0.01) at 1.5 h after low temperature stress. The subcellular localization of Lvp70S6K could be detected in cytoplasm. ROS production was significantly up-regulation (1.19-fold, p < 0.01), total hemocyte count (THC) was significantly down-regulation (0.22-fold, p < 0.01), apoptosis rate was markedly increased (1.09-fold, p < 0.01), apoptosis-related genes of LvPDCD4 (1.61-fold, p < 0.01) and LvCyt.C (1.23-fold, p < 0.01) were up-regulated, and anti-apoptotic gene of LvBcl-2 (0.69-fold, p < 0.01), LvIAP1 (0.68-fold, p < 0.01) and LvIAP2 (0.45-fold, p < 0.01) were decreased after low temperature stress in hemolymph of Lvp70S6K-silenced shrimp at 1.5 h. Silencing of LvPTEN significantly increased Lvp70S6K, LvPI3K, LvAKT and LvmTOR expression. In summary, these results indicated that Lvp70S6K play a crucial role in oxidative and apoptosis, which was able to negatively regulate by PTEN.


Asunto(s)
Apoptosis/genética , Proteínas de Artrópodos/genética , Penaeidae/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Estrés Fisiológico/genética , Animales , Citoplasma/metabolismo , Hemocitos/metabolismo , Hepatopáncreas/metabolismo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/genética , Temperatura
11.
Fish Shellfish Immunol ; 96: 53-61, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31801694

RESUMEN

Target of rapamycin (TOR) is an atypical of Ser/Thr protein kinase that plays an important role in many aspects such as cell growth, reproduction, differentiation, cell cycle regulation, autophagy and apoptosis. However, little information is known about the enzyme in crustaceans. Here, a novel TOR was identified from shrimp Penaeus vannamei (PvTOR) and its biological functions were investigated in response low temperature stress. The PvTOR gene encoded a polypeptide of 2464 amino acids with an estimated molecular mass of 279.4 kD and a predicted isoelectronic point (pI) of 7.30. Phylogenetic analysis revealed that PvTOR shared high similarity with other known species. PvTOR mRNA was detected in all the tested tissues and highest transcription in muscle and hepatopancreas. PvTOR transcriptional level was up-regulated significantly at 1.5 h and 3 h, and down-regulated at 12 h and 24 h after low temperature stress. TEM and autophagy indicator system GFP-PvLC3 suggested that low temperature induced autophagy generation. ROS, Ca2+ concentration and apoptosis rate were increased significantly in TOR-knockdown shrimp after low temperature stress. The autophagy associated gene ATG8II/I, PvBeclin-1, PvATG14, apoptosis gene PvPARP, Pvcasp-3, PvBAX and Pvp53 transcripts, and casp-3/8 activity in hemocyte were increased significantly in TOR-knockdown group shrimp at 3 h after low temperature stress. Additionally, THC counts of TOR-knockdown group were significantly higher than the dsGFP group. In summary, these results suggested that PvTOR plays an important role in the adaptation mechanisms of shrimp at low temperature by regulating autophagy and apoptosis.


Asunto(s)
Proteínas de Artrópodos/genética , Frío/efectos adversos , Penaeidae/genética , Penaeidae/inmunología , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Animales , Apoptosis/genética , Proteínas de Artrópodos/metabolismo , Autofagia/genética , Filogenia , Análisis de Secuencia de ADN , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo
12.
Fish Shellfish Immunol ; 90: 404-412, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31077847

RESUMEN

MicroRNAs (miRNAs) are a kind of small non-coding RNAs that have been reported to play a vital role in mediating host-pathogen interactions. High-throughput sequencing technology was applied to identify and illuminate mRNAs and miRNAs from grouper infected with Vibrio alginolyticus. The KEGG pathway enrichment analysis showed that the most significate DEGs are associated with Toll-like receptor signaling pathway and NOD-like receptor signaling pathway. We obtained 374 known miRNAs and 116 novel miRNAs. During them, there are 31 up-regulated miRNAs and 93 down-regulated miRNAs. miRNA-mRNA GO and KEGG analysis show that there are 90 miRNAs associated with the immune system. The target genes of immune-related miRNAs (miR-142, miR-146, miR-150, miR-155, miR-203, miR-205, miR-24, miR-31) and genes (CD80, IL-2, AMPK, PI3K) in Epinephelus coioddes were predicted and validated. This study provides an opportunity to further understanding the molecular mechanisms especially the immune system of miRNA regulation in Epinephelus coioddes host-pathogen interactions.


Asunto(s)
Lubina/genética , Lubina/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Animales , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Vibriosis/inmunología , Vibriosis/veterinaria , Vibrio alginolyticus/fisiología
13.
Fish Shellfish Immunol ; 88: 284-292, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30849500

RESUMEN

SAHH is an enzyme, playing a significant role in the catalyzation of the S-adenosyl homocysteine (SAH) into homocysteine (Hcy) and adenosine (Ado). However, little is known information of the enzyme in crustaceans. In the present study, SAHH cDNA was cloned from Litopenaeus vannamei (LvSAHH). The full length of the LvSAHH was found, containing a 5' UTR of 119 bp, an ORF of 1236 bp and a 3' UTR of 549 bp. The LvSAHH gene encoded a polypeptide of 411 amino acids with an estimated molecular mass of 45.55 kD and a predicted isoelectronic point (pI) of 5.63. Comparison of the deduced amino acid sequence showed that LvSAHH has high identity (70 %-82%) with other known species. qRT-PCR analysis revealed that LvSAHH mRNA was broadly expressed in all of the examined tissues, while the highest expression level was observed in muscle, followed by the expression in stomach, gill, pleopod, hepatopancreas, heart, eye and intestine. Subcellular localization analysis revealed that LvSAHH was predominantly localized in the cytoplasm and nucleus. LvSAHH mRNA expression levels in hepatopancreas and gill were significantly up-regulated from 6 to 48 h after V. alginolyticus injection and reached the highest level (15-fold and 8-fold, p < 0.01) at 24 h, respectively. Additionally, the Toll-like receptors (TLR) and interleukins-16 (IL-16) were detected in hepatopancreas and gill of LvSAHH-knockdown SAHH. LvRack1, LvToll1, LvToll2, LvToll3 and LvIL-16 transcripts were decreased significantly in LvSAHH-knockdown shrimp at 24 h post V. alginolyticus stimulation in hepatopancreas and gill. But LvToll3 was no significant difference in gill. In summary, these results indicated that LvSAHH may play a regulatory role in the invertebrate innate immune defense by regulating TLR and IL-16 expression.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Penaeidae/inmunología , Vibrio alginolyticus , Adenosilhomocisteinasa/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Expresión Génica , Técnicas de Silenciamiento del Gen , Inmunidad Innata/genética , Interleucina-16/metabolismo , Penaeidae/enzimología , Penaeidae/microbiología , ARN Mensajero/metabolismo , Receptores Toll-Like/metabolismo
14.
Fish Shellfish Immunol ; 91: 1-11, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31085326

RESUMEN

The immune mechanism elicited in pufferfish (Takifugu obscurus) against the invasion of Aeromonas hydrophila is still poorly understood. We examined the spleen of pufferfish at the transcriptome and proteome levels by using Illumina-seq and TMT coupled mass spectrometry after 12 h infection by A. hydrophila, respectively. A total of 2,339 genes (1,512 up-regulated and 827 down-regulated) and 537 (237 up-regulated and 300 down-regulated) proteins were identified. GO and KEGG analyses revealed that the responses to stimulus were the main biological processes, intestinal immune network for IgT production and calcium signaling pathway. Fourteen genes (8 up-regulated and 6 down-regulated) and proteins (5 up-regulated and 9 down-regulated) involved immune responses or signal transduction were validated by qRT-PCR and parallel reaction monitoring to confirm the reliability of the transcriptomic and proteomic analyses, respectively. Moreover, qRT-PCR and flow cytometry were used to detect dynamics of the genes in calcium signaling pathway and changes of concentration of cytoplasm Ca2+ in spleen cells within a 72 h challenge. This study provides the findings regarding immune response, especially intestinal immune network for IgT production pathway and calcium signaling pathway at the molecular, protein and cellular in pufferfish after infection by A. hydrophila. These results would provide a new insight and molecular targets into the response to pathogenic infection in pufferfish.


Asunto(s)
Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Regulación de la Expresión Génica/inmunología , Bazo/inmunología , Takifugu/genética , Takifugu/inmunología , Aeromonas hydrophila/fisiología , Animales , Regulación hacia Abajo , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Proteoma/genética , Proteoma/inmunología , Transcriptoma , Regulación hacia Arriba
15.
Fish Shellfish Immunol ; 84: 8-19, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30261298

RESUMEN

Complement 1 inhibitor (C1INH) serving as a multifunctional factor can participate in the regulation of complement cascades and attenuate the activation of various proteases. In this study, we obtained EcC1INH cDNA and the tissue-specific analysis indicate that the highest expression level of EcC1INH mRNA was detected in liver. Moreover, Vibrio alginolyticus challenge can significantly increase EcC1INH mRNA expression in liver and kidney. N-terminal domain of EcC1INH could decrease LPS binding activity to cell surface, while loss of positively charged residues (PCRs) Arg21, His22, Lys50, Arg61 in N-terminal domain of EcC1INH can significantly reduce its interaction with LPS. Furthermore, LPS injection experiment indicated that the binding of EcC1INH N-terminal domain to LPS can antagonize LPS-induced inflammatory signaling pathway and attenuate the production of proinflammatory cytokines in vivo, indicating that EcC1INH was involved in negative regulation of inflammatory response.


Asunto(s)
Proteína Inhibidora del Complemento C1 , Proteínas de Peces , Perciformes , Animales , Proteína Inhibidora del Complemento C1/genética , Proteína Inhibidora del Complemento C1/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Lipopolisacáridos/farmacología , Hígado/metabolismo , Perciformes/genética , Perciformes/inmunología , Dominios Proteicos , Vibriosis/genética , Vibriosis/inmunología , Vibriosis/veterinaria , Vibrio alginolyticus
16.
Fish Shellfish Immunol ; 89: 486-497, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30980917

RESUMEN

CD59, a multifunctional glycoprotein, not only plays a regulatory role in complement cascades, but also participates in modulation of teleostean immunity. In this study, full length sequence of EcCD59 was obtained, comprising a 5'UTR of 163 bp, an ORF of 354 bp and a 3'UTR of 559 bp. EcCD59 gene encoded a polypeptide of 117 amino acids. Tissue-specific analysis revealed that the highest expression of EcCD59 mRNA was observed in muscle. Vibrio alginolyticus challenge can significantly increase EcCD59 mRNA expression in liver, kidney and spleen. EcCD59 distribution was detected by a combined approach using GFP-overexpression, immunofluorescence and ELISA assay, indicating that EcCD59 may be predominantly aggregated in cellular membrane. Both EcCD59 and EcCD59delGPI can directly bind to V. alginolyticus and decrease the in vitro growth of V. alginolyticus. Additionally, vibrio injection experiment indicated that the binding of EcCD59 or EcCD59delGPI to V. alginolyticus can restrict its growth rate in vivo. In this study, we found that EcCD59 may be involved in immune defense against vibrio infection in a complement-independent manner.


Asunto(s)
Lubina/genética , Lubina/inmunología , Antígenos CD59/genética , Antígenos CD59/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Antígenos CD59/química , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Filogenia , Alineación de Secuencia/veterinaria , Vibriosis/inmunología , Vibriosis/veterinaria , Vibrio alginolyticus/crecimiento & desarrollo , Vibrio alginolyticus/fisiología
17.
Fish Shellfish Immunol ; 76: 355-367, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29544772

RESUMEN

It is well known that PI3K regulates various processes in mammalian cells by generating a secondary messenger that later activates AKT. However, its innate immune function in crustaceans remains unclear. We report the characterization of Litopenaeus vannamei PI3K (LvPI3K) for investigating how PI3K participates in the innate immunity of crustaceans. Full-length LvPI3K cDNA was 3357 bp long, with a 3222 bp open reading frame (ORF) that encodes a putative protein of 1292 amino acids. The PI3K catalytic domain (PI3Kc) of LvPI3K was found to be rather conserved when the PI3Ks from other species were analyzed. The LvPI3K protein was shown to be localized to the cytoplasm of Drosophila S2 cells, while LvPI3K mRNA was ubiquitously expressed in healthy L. vannamei, with the highest expression found in hemolymph. A dual luciferase reporter gene assay demonstrated that LvPI3K overexpression activated the promoter of antibacterial peptide LvPEN4 in a dose-dependent manner. However, the addition of PDTC, a specific inhibitor of NF-κB, suppressed the LvPI3K-induced LvPEN4 promoter activation. Moreover, Vibrio alginolyticus challenge induced a rapid up-regulation of LvPI3K expression. Further experiments showed that LvPI3K silencing in shrimp challenged with V. alginolyticus significantly increased Vibrio number, ROS production and DNA damage in the hemolymph, as well as significantly decreased total hemocyte count. The mRNA levels of certain molecules related to LvPI3K signaling, such as LvAKT and LvPEN4, also decreased following LvPI3K silencing. Taken together, these results suggest that LvPI3K regulates the downstream signal component LvPEN4 and functions in V. alginolyticus resistance.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Penaeidae/genética , Penaeidae/inmunología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Fosfatidilinositol 3-Quinasas/química , Filogenia , Alineación de Secuencia , Vibrio alginolyticus/fisiología
18.
Fish Shellfish Immunol ; 83: 190-204, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30195911

RESUMEN

Nucleotide excision repair (NER) removes many different types of DNA lesions, and NER related host factors are reported to aid recovery steps during viral integration. Here, we report the identification and characterization of a DNA repair gene Rad23 from Litopenaeus vannamei and explore its role in innate immunity of crustaceans. LvRad23 contains a1149 bp open reading frame (ORF) which encodes a 382 amino acids protein with predicted theoretical isoelectric point of 4.21. LvRad23 was ubiquitously expressed in the muscle, eyestalk, gill, stomach, heart, legs, intestine, and hepatopancreas in order from high to low and LvRad23 protein was showed to be located in the cytoplasm of Drosophila S2 cells. The homology analysis showed that it has a high sequence homology with Rad23 protein from Marsupenaeus japonicus. Vibrio alginolyticus challenge induced a remarkable up-regulation of LvRad23 mRNA in hepatopancreas. Knocking down LvRad23can interfere the NER pathway by down regulating the expression of replication protein A (RPA) and proliferating cell nuclear antigen (PCNA). However it didn't cause any significant difference on total hemocyte count (THC) between LvRad23-silenced and non-silenced group.LvRad23-silenced then challenge with V. alginolyticus inducing high level of reactive oxygen species (ROS) and DNA damage in hemolymph. As well as decreased THC, which seriously diminished the innate immune system of L. vannamei. Meanwhile, the NER pathway was reactived by enhancing the expression of LvRad23 and promoting the production of LvPCNA to resist apoptosis and maintain proliferation of hemolymph cells in the later stage. Our results suggest that LvRad23 plays a vital role in shrimp specific immune response to V. alginolytcus through its participation in NER pathway.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Penaeidae/genética , Penaeidae/microbiología , Vibrio alginolyticus , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN Complementario/genética , Proteínas de Unión al ADN/metabolismo
19.
Dev Comp Immunol ; 157: 105191, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705263

RESUMEN

Ficus hirta Vahl. (FhV) has been shown to have antimicrobial and antiviral efficacy. To further ascertain the pharmacological properties of FhV., and to search for alternatives to antibiotics. An in vitro experiment was carried out to evaluate what influence FhV. would have on LPS-induced apoptosis. In this study, Fas, an apoptosis receptor, was cloned, which included a 5'-UTR of 39 bp, an ORF of 951 bp, a protein of 316 amino acids, and a 3'-UTR of 845 bp. EcFas was most strongly expressed in the spleen tissue of orange-spotted groupers. In addition, the apoptosis of fish spleen cells induced by LPS was concentration-dependent. Interestingly, appropriate concentrations of FhV. alleviated LPS-induced apoptosis. Inhibition of miR-411 further decreased the inhibitory effect of Fas on apoptosis, which reduced Bcl-2 expression and mitochondrial membrane potential, enhanced the protein expression of Bax and Fas. More importantly, the FhV. could activate miR-411 to improve this effect. In addition, luciferase reporter assays showed that miR-411 binds to Fas 3'-UTR to inhibit Fas expression. These findings provide evidence that FhV. alleviates LPS-induced apoptosis by activating miR-411 to inhibit Fas expression and, therefore, provided possible strategies for bacterial infections in fish.


Asunto(s)
Apoptosis , Proteínas de Peces , Lipopolisacáridos , MicroARNs , Bazo , Animales , Apoptosis/efectos de los fármacos , Lipopolisacáridos/inmunología , MicroARNs/genética , MicroARNs/metabolismo , Bazo/metabolismo , Bazo/inmunología , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Receptor fas/metabolismo , Receptor fas/genética , Enfermedades de los Peces/inmunología , Regulación hacia Abajo , Lubina/inmunología , Lubina/genética , Células Cultivadas , Regiones no Traducidas 3'/genética , Perciformes/inmunología
20.
Int J Biol Macromol ; 258(Pt 2): 129084, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161029

RESUMEN

MicroRNA (miRNA) is a highly conserved non-coding tiny endogenous RNA molecule that regulates various cellular functions by inhibiting mRNA translation or promoting the degradation of proteins. In this study, we identified a specific miRNA (designed as Pva-miR-2765) from Penaeus vannamei, which widely distributed in different tissues of shrimp, with the highest concentration found in the intestine. Through fluorescence in situ hybridization (FISH), we observed that Pva-miR-2765 is primarily located in the cytoplasm. Interestingly, we found that the expression of Pva-miR-2765 significantly decreased in hemocytes, hepatopancreas and gill under ammonia nitrogen stress. Furthermore, when Pva-miR-2765 was silenced, the autophagy level in shrimp significantly increased. Additionally, Pva-miR-2765 was found to promote pathological damage in the hepatopancreas of shrimp. Subsequently, correlation analysis revealed a negative relationship between the expression of Pva-miR-2765 and PvTBC1D7. To confirm this interaction, we conducted a dual luciferase reporter gene assay, which demonstrated that Pva-miR-2765 inhibit the expression of PvTBC1D7 by interacting with its 3'UTR. And the expression level of PvTBC1D7 in shrimp decreased significantly under ammonia nitrogen stress in Pva-miR-2765 overexpressed. Our findings suggest that Pva-miR-2765 can reduce autophagy in P. vannamei by inhibiting the regulation of PvTBC1D7, thereby participating in the oxidative stress of shrimp caused by ammonia nitrogen stress.


Asunto(s)
MicroARNs , Penaeidae , Animales , Amoníaco , Hibridación Fluorescente in Situ , Nitrógeno , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA