Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 70(10): 2781-2793, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33634371

RESUMEN

TIGIT is a lymphocyte surface receptor, which is mainly expressed on the surface of CD8+T cells. The role of TIGIT in colorectal cancer and its expression pattern in colorectal cancer infiltrating lymphocytes are still controversial. This study aimed at identifying the function of TIGIT in colorectal cancer. Patients with colorectal cancer showed significantly higher TIGIT+CD8+T cell infiltration in tumor tissues, metastases compared with paired PBMC and normal tissues through flow cytometry. TIGIT+CD8+T cells showed an exhausted phenotype and expressed low levels of killer cytokines IFN-γ, IL-2, TNF-α. In addition, more inhibitory receptors such as PD-1, LAG-3, and TIM-3 were expressed on the surface of TIGIT+CD8+T cells. TGF-ß1 could promote the expression of TIGIT and inhibit CD8+T cell function in vitro. Moreover, the accumulation of TIGIT+T cells in tumors was associated with advanced disease, predicted early recurrence, and reduced survival rates in colorectal cancer patients. Our results indicate that TIGIT can be a biological marker for the prognosis of colorectal cancer, and TIGIT can be used as a potential target for treatment.


Asunto(s)
Neoplasias Colorrectales/complicaciones , Regulación Neoplásica de la Expresión Génica/genética , Receptores Inmunológicos/genética , Neoplasias Colorrectales/fisiopatología , Femenino , Humanos , Masculino , Pronóstico
2.
Clin Lab ; 67(9)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34542979

RESUMEN

BACKGROUND: Chest CT is important for the diagnosis of Corona Virus Disease 2019, which is caused by SARS-CoV-2 via the receptor angiotensin-converting enzyme 2. This study aimed to present special chest CT changes in the detection and management of COVID-19. METHODS: From February 20 to March 6, 2020, clinical data and chest CT of patients with COVID-19 being treated by the Hubei Medical Team were retrospectively analyzed with a time-interval of 2 weeks. In addition, the expressions of ACE2 in different parts of the respiratory system were detected by immunohistochemical staining to explain the special chest CT features of COVID-19 by ACE2 expression. RESULTS: Of 58 patients, the main respiratory manifestations were fever and cough. Spherical or patchy GGO was the initial CT manifestation of COVID-19 pneumonia. CT findings manifested as rapid evolution from focal unilateral to diffuse bilateral ground-glass opacities (GGO) that progressed to or co-existed with consolidations in chest CT scans. Lung consolidation increased as the disease progressed, accounting for 63.2%, 76.3%, and 87.5% in group 1 (disease course with 0 - 2 weeks), group 2 (2 - 4 weeks), and group 3 (> 4 weeks). Fibrous lesions (72.3%), high density vascular shadow (69.2%), reticular pattern (63.1%), and subpleural parallel sign (61.5%) were common signs of chest CT of COVID-19. IHC results showed that ACE2-expression in the pulmonary alveoli was significantly higher than that in the bronchial mucosa and pleura (p < 0.001). CONCLUSIONS: The special change of CT features in the lung of COVID-19 pneumonia patients have a connection with ACE2 expression patterns in the respiratory system.


Asunto(s)
COVID-19 , Peptidil-Dipeptidasa A , Humanos , Pulmón/diagnóstico por imagen , Estudios Retrospectivos , SARS-CoV-2 , Tomografía Computarizada por Rayos X
3.
Clin Lab ; 67(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34258966

RESUMEN

BACKGROUND: Respiratory epithelium expressing angiotensin-converting enzyme 2 (ACE2) is the entry for novel coronavirus (SARS-CoV-2), pathogen of the COVID-19 pneumonia outbreak, although a few recent studies have found different ACE2 expression in lung tissue of smokers. The effect of smoking on ACE2 expression and COVID-19 is still not clear. So, we did this research to determine the effect of smoking on ACE2 expression pattern and its relationship with the risk and severity of COVID-19. METHODS: The clinical data of COVID-19 patients with smoking and non-smoking were analyzed, and ACE2 expression of respiratory and digestive mucosa epithelia from smoker and non-smoker patients or healthy subjects were detected by immunohistochemical (IHC) staining. RESULTS: Of all 295 laboratory-confirmed COVID-19 patients, only 24 (8.1%) were current smokers with moderate smoking or above, which accounted for 54.2% of severe cases with higher mortality than non-smokers (8.3% vs. 0.4%, p = 0.018). Data analysis showed the proportion of smokers in COVID-19 patients was lower than that in general population of China (Z = 11.65, P < 0.001). IHC staining showed ACE2 expression in respiratory and digestive epithelia of smokers were generally downregulated. CONCLUSIONS: The proportion of smokers in COVID-19 patients was lower, which may be explained by ACE2 downregulation in respiratory mucosa epithelia. However, smoking COVID-19 patients accounted for a higher proportion in severe cases and higher mortality than for non-smoking COVID-19 patients, which needs to be noted.


Asunto(s)
COVID-19 , Peptidil-Dipeptidasa A , Enzima Convertidora de Angiotensina 2 , China/epidemiología , Humanos , Peptidil-Dipeptidasa A/genética , SARS-CoV-2 , Fumar/efectos adversos
4.
J Control Release ; 369: 309-324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554771

RESUMEN

Immunotherapy based on the PD-1/PD-L1 axis blockade has no benefit for patients diagnosed with colon cancer liver metastasis (CCLM) for the microsatellite stable/proficient mismatch repair (MSS/pMMR)) subtype, which is known as an immune-desert cancer featuring poor immunogenicity and insufficient CD8+ T cell infiltration in the tumor microenvironment. Here, a multifunctional nanodrug carrying a cyclin-dependent kinase (CDK)1/2/5/9 inhibitor and PD-L1 antibody is prepared to boost the immune checkpoint blockade (ICB)-based immunotherapy against MSS/pMMR CCLM via reversing the immunosuppressive tumor microenvironment. To enhance the MSS/pMMR CCLM-targeting efficacy, we modify the nanodrug with PD-L1 knockout cell membrane of this colon cancer subtype. First, CDKs inhibitor delivered by nanodrug down-regulates phosphorylated retinoblastoma and phosphorylated RNA polymerase II and meanwhile arrests the G2/M cell cycle in CCLM to promote immunogenic signal release, stimulate dendritic cell maturation, and enhance CD8+ T cell infiltration. Moreover, CDKi suppresses the secretion of immunosuppressive cytokines in tumor-associated myeloid cells sensitizing ICB therapy in CCLM. Notably, the great efficacy to activate immune responses is demonstrated in the patient-derived xenograft model and the patient-derived organoid model as well, revealing a clinical application potential. Overall, our study represents a promising therapeutic approach for targeting liver metastasis, remolding the tumor immune microenvironment (TIME), and enhancing the response of MSS/pMMR CCLM to boost ICB immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias del Colon , Inmunoterapia , Neoplasias Hepáticas , Microambiente Tumoral , Animales , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Humanos , Inmunoterapia/métodos , Neoplasias del Colon/patología , Neoplasias del Colon/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/terapia , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Ratones , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Femenino , Nanopartículas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
Acta Biomater ; 164: 538-552, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37037269

RESUMEN

Liver metastasis is the leading cause of death in colorectal cancer. Immunotherapy using immune checkpoint blockade (ICB) is ineffective due to its immunological cold tumor nature. Herein, we prepared a nanodrug (NCG) encapsulating the transforming growth factor-ß receptor inhibitor galunisertib (Gal) and the sonosensitizer chlorin e6 (Ce6), which was aimed to turn this type of cold tumor into a hot one to promote the ICB-based immunotherapy against it. After delivery to the tumor, NCG under ultrasonic irradiation generated reactive oxygen species causing tumor immunogenic cell death and releasing immunostimulatory signals such as calreticulin and HMGB1, which increased tumor immunogenicity and activated the innate T lymphocyte immune response. Moreover, NCG responded to the acidic microenvironment and released Gal, inhibiting phosphorylation and inducing immunosuppressive Smad2/3 signaling. Consequently, the differentiation of MDSCs was inhibited, M1-like polarization of tumor-associated macrophages was induced, and the immunosuppressive barrier of tumor-associated fibroblasts was destroyed to increase the infiltration of effector T cells, which reversed the immunosuppression of the tumor microenvironment and improved the therapeutic efficacy of anti-PD-L1 antibodies. Notably, in the liver metastasis mouse model, combination therapy using NCG (+) and aPD-L1 inhibited the growth of colon cancer liver metastasis, manifesting potential in treating this popular yet intractable malignancy. STATEMENT OF SIGNIFICANCE: Only a limited number of patients with colorectal cancer and liver metastasis can benefit from immune checkpoint blockade therapy, as most of them are microsatellite stable, immunologically cold tumors. Interestingly, there is compelling evidence that sonodynamic therapy (SDT) can convert immunosuppressed cold tumors into hot ones, trigger tumor immunogenic cell death non-invasively, and boost cytotoxic T cells infiltration. However, its therapeutic efficacy is constrained by the abundance of transforming growth factor-ß (TGF-ß) cytokines in the tumor microenvironment. Here, we reported a TGF-ß-targeted inhibitory nanodrug that improved SDT in colon cancer and liver metastasis, reversed the immunosuppressive tumor microenvironment and boosted the immune response to anti-PD-L1 therapy in this cancer. It demonstrated the potential to cure this prevalent but incurable malignancy.


Asunto(s)
Neoplasias del Colon , Neoplasias Hepáticas , Nanopartículas , Animales , Ratones , Factor de Crecimiento Transformador beta , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia , Neoplasias del Colon/patología , Inmunidad , Factores de Crecimiento Transformadores/farmacología , Factores de Crecimiento Transformadores/uso terapéutico , Nanopartículas/uso terapéutico , Microambiente Tumoral , Línea Celular Tumoral
6.
Bioeng Transl Med ; 7(3): e10319, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36176612

RESUMEN

Neurogenic erectile dysfunction (nED) is one of the most common and intractable postoperative complications of rectal and prostate cancer surgery and sometimes accompanies patients lifelong. The transplantation of stem cells has been proved a promising way for treatment. However, the therapeutic efficacy is severely impaired by excessive cell loss and death and poor accumulation in the injury site along with the traditional implantation strategy. Herein, an EPO-loaded multifunctional hydrogel was designed. The hydrogels' adhesive property and mechanical strength were enhanced by adding catechol-catechol adducts, thus significantly improving adipose-derived stem cells (ADSC) retention and rescuing cell loss in the injury site. Meanwhile, the sustained release of EPO effectively ameliorated the viability and paracrine activity of ADSC, leading to enhanced migration of Schwann cells and differentiation of PC12 cells in vivo. On a bilateral cavernous nerve injury rat model, the present stem cell-EPO-hydrogel implanted strategy could significantly alleviate erectile dysfunction. The higher expression of Tuj1 and lower expression of GFAP in the major pelvic ganglia (MPG) indicated the acceleration of neural differentiation while the suppressing development of astrocytes. Also, the combined therapy restored the expression levels of eNOs, nNOs, and α-SMA in penile tissues, suggesting the rehabilitation of the penis. Further analysis of Masson trichrome staining and apoptosis evaluation of the corpus cavernosum showed the preservation of vascular endothelium content and the prevention of penile fibrosis after denervation. Overall, we believe that this combined strategy presents a promising way not only for restoring neurogenic erectile function but also for the clinical translation of stem cell therapy.

7.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104099

RESUMEN

BACKGROUND: Onco-immunogenic molecule CD155 is overexpressed in various tumor microenvironments (TME) including in colorectal cancer (CRC). Tumor-associated macrophages (TAMs) are the most abundant immune cells in CRC TME and play a vital role in CRC progression and metastasis. Most studies have focused on investigating the role of CRC cell-specific CD155 on CRC progression, while the contribution of TAMs-specific CD155 is still unknown. Here, we sought to investigate the expression pattern of CD155 in CRC TAMs and its role in tumor immunity and progression. METHODS: CD155 expression patterns in CRC TAMs and macrophages in paratumor or adjacent normal tissue were analyzed in 50 patients with CRC using flow cytometry and in 141 patients with CRC using immunohistochemistry. The correlation of CD155 expression level in TAMs with M1 and M2 phenotypic transition was analyzed. The role of macrophage-specific CD155 in CRC progression and tumor immune response was investigated in vitro and in vivo. We further analyzed the effect of CRC cells on the regulation of CD155 expression in macrophages. RESULTS: CRC TAMs from clinical samples showed robustly higher expression of CD155 than macrophages from paratumor and adjacent normal tissues. The CD155 expression level was higher in TAMs of CRC at III/IV stages compared with the I/II stages and was negatively associated with the survival of patients with CRC. CD155+ TAMs showed an M2 phenotype and higher expression of interleukin (IL)-10 and transforming growth factor (TGF)-ß. CD155+ macrophages promoted CRC cell migration, invasion, and tumor growth supporting the findings from the clinical tissue analysis. This effect was mainly regulated by TGF-ß-induced STAT3 activation-mediated release of matrix metalloproteinases (MMP)2 and MMP9 in CRC cells. CD155-/- bone marrow transplantation in wild-type mice, as well as CD155- macrophages treatment, promoted the antitumor immune response in the mice ectopic CRC model. Additionally, CRC cells released IL-4 to trigger CD155 expression in macrophages indicating the regulatory role of CRC cells in the development of CD155+ TAMs. CONCLUSIONS: These findings indicated that CD155+ TAMs are responsible for the M2-phenotype transition, immunosuppression, and tumor progression in CRC. The specific localization of CD155+ TAMs in CRC tissue could turn into a potential therapeutic target for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Macrófagos Asociados a Tumores , Animales , Movimiento Celular , Neoplasias Colorrectales/patología , Terapia de Inmunosupresión , Ratones , Fenotipo , Receptores Virales/inmunología , Factor de Crecimiento Transformador beta , Microambiente Tumoral
8.
Int J Nanomedicine ; 16: 2897-2915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907399

RESUMEN

BACKGROUND: Surgery is considered to be a potentially curative approach for gastric cancer. However, most cases are diagnosed at a very advanced stage for the lack of typical symptoms in the initial stage, which makes it difficult to completely surgical resect of tumors. Early diagnosis and precise personalized intervention are urgent issues to be solved for improving the prognosis of gastric cancer. Herein, we developed an RGD-modified ROS-responsive multifunctional nanosystem for near-infrared (NIR) imaging and photothermal therapy (PTT) against gastric cancer. METHODS: Firstly, the amphiphilic polymer was synthesized by bromination reaction and nucleophilic substitution reaction of carboxymethyl chitosan (CMCh) and 4-hydroxymethyl-pinacol phenylborate (BAPE). Then, it was used to encapsulate indocyanine green (ICG) and modified with RGD to form a smart multifunctional nanoparticle targeted to gastric cancer (CMCh-BAPE-RGD@ICG). The characteristics were determined, and the targeting capacity and biosafety were evaluated both in vitro and in vivo. Furthermore, CMCh-BAPE-RGD@ICG mediated photothermal therapy (PTT) effect was studied using gastric cancer cells (SGC7901) and SGC7901 tumor model. RESULTS: The nanoparticle exhibited suitable size (≈ 120 nm), improved aqueous stability, ROS-responsive drug release, excellent photothermal conversion efficiency, enhanced cellular uptake, and targeting capacity to tumors. Remarkably, in vivo studies suggested that CMCh-BAPE-RGD@ICG could accurately illustrate the location and margin of the SGC7901 tumor through NIR imaging in comparison with non-targeted nanoparticles. Moreover, the antitumor activity of CMCh-BAPE-RGD@ICG-mediated PTT could effectively suppress tumor growth by inducing necrosis and apoptosis in cancer cells. Additionally, CMCh-BAPE-RGD@ICG demonstrated excellent biosafety both in vitro and in vivo. CONCLUSION: Overall, our study provides a biocompatible theranostic nanoparticle with enhanced tumor-targeting ability and accumulation to realize NIR image-guided PTT in gastric cancer.


Asunto(s)
Nanopartículas Multifuncionales/química , Nanopartículas Multifuncionales/uso terapéutico , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/terapia , Animales , Ácidos Borónicos/química , Línea Celular Tumoral , Quitosano/análogos & derivados , Quitosano/química , Femenino , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Ratones Endogámicos BALB C , Oligopéptidos/química , Fototerapia/métodos , Terapia Fototérmica , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Adv Sci (Weinh) ; 8(14): e2100712, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34021727

RESUMEN

An ideal tumor treatment is supposed to eliminate the primary tumor and simultaneously trigger the host antitumor immune responses to prevent tumor recurrence and metastasis. Herein, a liposome encapsulating phosphoinositide 3-kinase gamma (PI3Kγ) inhibitor IPI-549 and photosensitizer chlorin e6 (Ce6), denoted by LIC, is prepared for colon cancer treatment. LIC internalized into CT26 cells generates reactive oxygen species (ROS) under laser irradiation to cause immunogenic tumor cell death, during which immunostimulatory signals such as calreticulin are released to further induce T lymphocyte-mediated tumor cell killing. Meanwhile, IPI-549 transported by liposome can inhibit PI3Kγ in the myeloid-derived suppressive cells (MDSCs), resulting in downregulation of arginase 1 (Arg-1) and ROS to promote MDSCs apoptosis and reduce their immunosuppressive activity to CD8+ T cells. LIC-mediated immunogenic photodynamic therapy synergizes with MDSCs-targeting immunotherapy, which significantly inhibits tumor growth via facilitating the dendritic cell maturation and tumor infiltration of CD8+ T cells while decreasing the tumor infiltration of immunosuppressive regulatory T cells, MDSCs, and M2-like tumor-associated macrophages. Moreover, the synergistic therapy increases the number of effector memory T cells (TEM ) in spleen, which suggests a favorable immune memory to prevent tumor recurrence and metastasis. The Ce6 and IPI-549-coloaded multifunctional nanodrug demonstrates high efficacy in colon cancer treatment.


Asunto(s)
Neoplasias del Colon/terapia , Inmunoterapia/métodos , Células Supresoras de Origen Mieloide/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Sistema de Administración de Fármacos con Nanopartículas
10.
Biomaterials ; 266: 120432, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069116

RESUMEN

Gastrointestinal (GI) cancers are among the most lethal malignancies. The treatment of advanced-stage GI cancer involves standard chemotherapeutic drugs, such as docetaxel, as well as targeted therapeutics and immunomodulatory agents, all of which are only moderately effective. We here show that Π electron-stabilized polymeric micelles based on PEG-b-p(HPMAm-Bz) can be loaded highly efficiently with docetaxel (loading capacity up to 23 wt%) and potentiate chemotherapy responses in multiple advanced-stage GI cancer mouse models. Complete cures and full tumor regression were achieved upon intravenously administering micellar docetaxel in subcutaneous gastric cancer cell line-derived xenografts (CDX), as well as in CDX models with intraperitoneal and lung metastases. Nanoformulated docetaxel also outperformed conventional docetaxel in a patient-derived xenograft (PDX) model, doubling the extent of tumor growth inhibition. Furthermore, micellar docetaxel modulated the tumor immune microenvironment in CDX and PDX tumors, increasing the ratio between M1-and M2-like macrophages, and toxicologically, it was found to be very well-tolerated. These findings demonstrate that Π electron-stabilized polymeric micelles loaded with docetaxel hold significant potential for the treatment of advanced-stage GI cancers.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Docetaxel , Portadores de Fármacos , Electrones , Neoplasias Gastrointestinales/tratamiento farmacológico , Ratones , Micelas , Polietilenglicoles , Microambiente Tumoral
11.
Front Bioeng Biotechnol ; 8: 575365, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102459

RESUMEN

Early diagnosis and complete resection of the tumor is an important way to improve the quality of life of patients with gastric cancer. In recent years, near-infrared (NIR) materials show great potential in fluorescence-based imaging of the tumors. To realize a satisfying intraoperative fluorescence tumor imaging, there are two pre-requirements. One is to obtain a stable agent with a relatively longer circulation time. The second is to make it good biocompatible and specific targeting to the tumor. Here, we developed an RGD-modified Distearyl acylphosphatidyl ethanolamine-polyethylene glycol micelle (DSPE-PEG-RGD) to encapsulate indocyanine green (ICG) for targeting fluorescence imaging of gastric cancer, aimed at realizing tumor-targeted accumulation and NIR imaging. 1H NMR spectroscopy confirmed its molecular structure. The characteristics and stability results indicated that the DSPE-PEG-RGD@ICG had a relatively uniform size of <200 nm and longer-term fluorescence stability. RGD peptides had a high affinity to integrin αvß3 and the specific targeting effect on SGC7901 was assessed by confocal microscopy in vitro. Additionally, the results of cytotoxicity and blood compatibility in vitro were consistent with the acute toxicity test in vivo, which revealed good biocompatibility. The biodistribution and tumor targeting image of DSPE-PEG-RGD@ICG were observed by an imaging system in tumor-bearing mice. DSPE-PEG-RGD@ICG demonstrated an improved accumulation in tumors and longer circulation time when compared with free ICG or DSPE-PEG@ICG. In all, DSPE-PEG-RGD@ICG demonstrated ideal properties for tumor target imaging, thus, providing a promising way for the detection and accurate resection of gastric cancer.

12.
Artif Cells Nanomed Biotechnol ; 47(1): 4211-4221, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31713444

RESUMEN

At present, cancer is the first cause of death for humans, but early detection and treatment can help improve prognoses and reduce mortality. However, further development of carrier-assistant drug delivery systems (DDSs) is retarded by the aspects such as the low drug-carrying capacity, carrier-induced toxicity and immunogenicity, complex synthesis manipulation. The development of nanoscale drug delivery systems (NDDS) have been rapidly developed to address these issues. In this article, we used PLGA-PEG with good biocompatibility to encapsulate Fe3O4 nanoparticles (a magnetic resonance imaging contrast agent) and DOX (an antitumour drug) via the emulsion-solvent evaporation method, aimed at achieving a dual function of the early detection and the treatment of mammary cancer. The results showed that the Fe3O4/DOX/PLGA-PEG nanoparticles had a relatively uniform size, a high carrier rate of Fe3O4 and high encapsulation efficiency of DOX, and a relatively high activity of released DOX within 120 h. In addition, in vitro studies showed that the Fe3O4/DOX/PLGA-PEG nanoparticles were cytocompatibility in NIH 3T3 fibroblast cells culture study while had a special effect on destroying human breast cancer MCF-7 cells compared with pure DOX solution. In vitro studies revealed that the Fe3O4/DOX/PLGA-PEG enabled enhanced T2 contrast magnetic resonance. Overall, our multifunctional Fe3O4/DOX/PLGA-PEG nanoparticles, composed of biocompatible substances and therapeutic/imaging materials, have great potential for the early detection of cancer and accurate drug delivery via the dynamic monitoring using MRI.


Asunto(s)
Materiales Biocompatibles/química , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Detección Precoz del Cáncer , Nanopartículas de Magnetita/química , Poliésteres/química , Polietilenglicoles/química , Células 3T3 , Animales , Materiales Biocompatibles/metabolismo , Transporte Biológico , Cápsulas , Portadores de Fármacos/metabolismo , Liberación de Fármacos , Imagen por Resonancia Magnética , Ratones , Tamaño de la Partícula , Solventes/química
13.
Ann Transl Med ; 7(16): 367, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31555681

RESUMEN

BACKGROUND: The albumin-bilirubin (ALBI) grade is an index that could objectively evaluate liver function. The purpose of this study was to evaluate the prognostic value of postoperative ALBI (post-ALBI) grade and ALBI changes (△ALBI) after hepatectomy in patients with hepatocellular carcinoma (HCC). METHODS: The clinical and pathological data of 300 patients with HCC who underwent hepatectomy in the Third Affiliated Hospital of Sun Yat-Sen University from January 19, 2009 to December 25, 2014, were analyzed retrospectively. According to the test data, the patients were divided into post-ALBI grade I, post-ALBI grade II, and post-ALBI grade III groups. According to the receiver operating characteristic curves (ROC), the patients were divided into △ALBI (△ALBI >0.71) high and low groups (△ALBI ≤0.71). Baseline clinical data, recurrence-free survival (RFS) and overall survival (OS) rates were compared between the groups. RESULTS: The 1-, 3-, and 5-year RFS rates and OS rates of patients with post-ALBI grade III were significantly reduced in comparison to those with post-ALBI grade II (P<0.001 both). Between the △ALBI groups, patients with low △ALBI level had significantly reduced 1-, 3-, and 5-year RFS rates and OS rates compared to those with a high △ALBI level (P<0.001 both). Multivariate analyses indicated that higher post-ABLI grade and △ALBI level were significantly independent predictors of an inferior OS and RFS (P<0.05). CONCLUSIONS: This study confirmed for the first time that post-ALBI grade and △ALBI could predict the prognosis of patients with HCC after hepatectomy.

14.
Aging (Albany NY) ; 11(20): 8879-8891, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31663864

RESUMEN

CD8+ T cells are thought to be the primary cytotoxic lymphocytes exerting antitumor effects. However, few studies have focused on the antitumor effects of CD8+ T cell-mediated humoral immunity or on interactions between CD8+ T cells and B cells in hepatocellular carcinoma (HCC). We found that the frequency of IL-21-producing CD8+CXCR5+ T cells was higher in HCC tumor tissue than in peritumoral tissue or peripheral blood from the same patients or in blood from healthy donors. Moreover, CD8+CXCR5+ T cells migrated in response to supernatants from primary HCC (HCC-SN) cells, and HCC-SN cells also powerfully induced CXCR5 expression in CD8+ T cells and IL-21 expression in CD8+CXCR5+ T cells. CD8+CXCR5+ T cells from HCC patients, but not those from healthy individuals, stimulated CD19+ B cells to differentiate into IgG-producing plasmablasts. These findings reveal that CD8+CXCR5+ T cells strongly infiltrate HCC tumors, and their infiltration is predictive of a better prognosis. Surprisingly, moreover, CD8+CXCR5+ T cells produced IL-21, which induced B cells to differentiate into IgG-producing plasmablasts and to play a key role in humoral immunity in HCC.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/inmunología , Receptores CXCR5/metabolismo , Anciano , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Receptores CXCR5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA