Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543942

RESUMEN

BACKGROUND: Hemodialysis patients have reduced serologic immunity after SARS-CoV-2 vaccination compared to the general population and an increased risk of morbidity and mortality when exposed to SARS-CoV-2. METHODS: Sixty-six hemodialysis patients immunized four times with the original SARS-CoV-2 vaccines (BNT162b2, mRNA-1273) either received a booster with the adapted Comirnaty Original/Omicron BA.4-5 vaccine 8.3 months after the fourth vaccination and/or experienced a breakthrough infection. Two months before and four weeks after the fifth vaccination, the live-virus neutralization capacities of Omicron variants BA.5, BQ.1.1, and XBB.1.5 were determined, as well as neutralizing and quantitative anti-SARS-CoV-2 spike-specific IgG antibodies. RESULTS: Four weeks after the fifth vaccination with the adapted vaccine, significantly increased neutralizing antibodies and the neutralization of Omicron variants BA.5, BQ.1.1, and XBB.1.5 were observed. The increase was significantly higher than after the fourth vaccination for variants BQ.1.1 and BA.5. Of all analyzed variants, BA.5 was neutralized best after the fifth vaccination. We did not see a difference in humoral immunity between the group with an infection and the group with a vaccination as a fifth spike exposure. Fivefold-vaccinated patients with a breakthrough infection showed a significantly higher neutralization capacity of XBB.1.5. CONCLUSION: A fifth SARS-CoV-2 vaccination with the adapted vaccine improves both wild-type specific antibody titers and the neutralizing capacity of the current Omicron variants BA.5, BQ.1.1, and XBB.1.5 in hemodialysis patients. Additional booster vaccinations with adapted vaccines will likely improve immunity towards current and original SARS-CoV-2 variants and are, therefore, recommended in hemodialysis patients. Further longitudinal studies must show the extent to which this booster vaccination avoids a breakthrough infection.

2.
Front Immunol ; 14: 1172477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063863

RESUMEN

Background: Kidney transplant recipients (KTRs) are at high risk for a severe course of coronavirus disease 2019 (COVID-19); thus, effective vaccination is critical. However, the achievement of protective immunogenicity is hampered by immunosuppressive therapies. We assessed cellular and humoral immunity and breakthrough infection rates in KTRs vaccinated with homologous and heterologous COVID-19 vaccination regimens. Method: We performed a comparative in-depth analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell responses using multiplex Fluorospot assays and SARS-CoV-2-specific neutralizing antibodies (NAbs) between three-times homologously (n = 18) and heterologously (n = 8) vaccinated KTRs. Results: We detected SARS-CoV-2-reactive T cells in 100% of KTRs upon third vaccination, with comparable frequencies, T-cell expression profiles, and relative interferon γ and interleukin 2 production per single cell between homologously and heterologously vaccinated KTRs. SARS-CoV-2-specific NAb positivity rates were significantly higher in heterologously (87.5%) compared to homologously vaccinated (50.0%) KTRs (P < 0.0001), whereas the magnitudes of NAb titers were comparable between both subcohorts after third vaccination. SARS-CoV-2 breakthrough infections occurred in equal numbers in homologously (38.9%) and heterologously (37.5%) vaccinated KTRs with mild-to-moderate courses of COVID-19. Conclusion: Our data support a more comprehensive assessment of not only humoral but also cellular SARS-CoV-2-specific immunity in KTRs to provide an in-depth understanding about the COVID-19 vaccine-induced immune response in a transplant setting.


Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad Humoral , SARS-CoV-2 , Progresión de la Enfermedad
3.
Clin Kidney J ; 16(12): 2447-2460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38046025

RESUMEN

Background: Individuals on haemodialysis (HD) are more vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than the general population due to end-stage kidney disease-induced immunosuppression. Methods: A total of 26 HD patients experiencing SARS-CoV-2 infection after a third vaccination were matched 1:1 with 26 of 92 SARS-CoV-2-naïve patients by age, sex, dialysis vintage and immunosuppressive drugs receiving a fourth vaccination with a messenger RNA-based vaccine. A competitive surrogate neutralization assay was used to monitor vaccination success. To determine infection neutralization titres, Vero-E6 cells were infected with SARS-CoV-2 variants of concern (VoCs), Omicron sublineage BA.1, BA.5 and BQ.1.1. The 50% inhibitory concentration (IC50, serum dilution factor 1:x) was determined before, 4 weeks after and 6 months after the fourth vaccination. Results: A total of 52 HD patients received four coronavirus disease 2019 (COVID-19) vaccinations and were followed up for a median of 6.3 months. Patient characteristics did not differ between the matched cohorts. Patients without a SARS-CoV-2 infection had a significant reduction of real virus neutralization capacity for all Omicron sublineages after 6 months (P < .001 each). Those patients with a virus infection did not experience a reduction in real virus neutralization capacity after 6 months. Compared with the other Omicron VoC, the BQ.1.1 sublineage had the lowest virus neutralization capacity. Conclusions: SARS-CoV-2-naïve HD patients had significantly decreased virus neutralization capacity 6 months after the fourth vaccination, whereas patients with a SARS-CoV-2 infection had no change in neutralization capacity. This was independent of age, sex, dialysis vintage and immunosuppression. Therefore, in infection-naïve HD patients a fifth COVID-19 vaccination might be reasonable 6 months after the fourth vaccination.

4.
Vaccines (Basel) ; 10(11)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36366348

RESUMEN

Recombinant proteins are essential in the development of subunit vaccines. In the design of many recombinant proteins, polyhistidine residues are added to the N- or C-termini of target sequences to facilitate purification. However, whether the addition of tag residues influences the immunogenicity of proteins remains unknown. In this study, the tag-free SARS-CoV-2 RBD and His-tag SARS-CoV-2 RBD proteins were investigated to determine whether there were any differences in their receptor binding affinity and immunogenicity. The results showed that the tag-free RBD protein had a higher affinity for binding with hACE2 receptors than His-tag RBD proteins (EC50: 1.78 µM vs. 7.51 µM). On day 21 after primary immunization with the proteins, the serum ELISA titers of immunized mice were measured and found to be 1:1418 for those immunized with tag-free RBD and only 1:2.4 for His-tag RBD. Two weeks after the booster dose, tag-free-RBD-immunized mice demonstrated a significantly higher neutralizing titer of 1:369 compared with 1:7.9 for His-tag-RBD-immunized mice. Furthermore, neutralizing antibodies induced by tag-free RBD persisted for up to 5 months and demonstrated greater cross-neutralization of the SARS-CoV-2 Delta variant. Evidence from Western blotting showed that the serum of His-tag-RBD-immunized mice recognized irrelevant His-tag proteins. Collectively, we conclude that the addition of a polyhistidine tag on a recombinant protein, when used as a COVID-19 vaccine antigen, may significantly impair protein immunogenicity against SARS-CoV-2. Antibody responses induced were clearly more rapid and robust for the tag-free SARS-CoV-2 RBD than the His-tag SARS-CoV-2 RBD. These findings provide important information for the design of antigens used in the development of COVID-19 subunit vaccines.

5.
Vaccines (Basel) ; 10(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36016216

RESUMEN

Hemodialysis patients are exposed to a markedly increased risk when infected with SARS-CoV-2. To date, it is unclear if hemodialysis patients benefit from four vaccinations. A total of 142 hemodialysis patients received four COVID-19 vaccinations until March 2022. RDB binding antibody titers were determined in a competitive surrogate neutralization assay. Vero-E6 cells were infected with SARS-CoV-2 variants of concern (VoC), Delta (B.1.617.2), or Omicron (B.1.1.529, sub-lineage BA.1) to determine serum infection neutralization capacity. Four weeks after the fourth vaccination, serum infection neutralization capacity significantly increased from a 50% inhibitory concentration (IC50, serum dilution factor 1:x) of 247.0 (46.3−1560.8) to 2560.0 (1174.0−2560.0) for the Delta VoC, and from 37.5 (20.0−198.8) to 668.5 (182.2−2560.0) for the Omicron VoC (each p < 0.001) compared to four months after the third vaccination. A significant increase in the neutralization capacity was even observed for patients with high antibody titers after three vaccinations (p < 0.001). Ten patients with SARS-CoV-2 breakthrough infection after the first blood sampling had by trend lower prior neutralization capacity for Omicron (p = 0.051). Our findings suggest that hemodialysis patients benefit from a fourth vaccination in particular in the light of the highly infectious SARS-CoV-2 Omicron-variants. A routinely applied four-time vaccination seems to broaden immunity against variants and would be recommended in hemodialysis patients.

6.
EBioMedicine ; 85: 104294, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36206622

RESUMEN

BACKGROUND: Vaccines are an important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 180 days after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both. METHODS: Various tests were used to determine the humoral and cellular immune response. To quantify the antibody levels, we used the surrogate neutralization (sVNT) assay from YHLO, which we augmented with pseudo- and real virus neutralization tests (pVNT and rVNT). Antibody avidity was measured by a modified ELISA. To determine cellular reactivity, we used an IFN-γ Elispot, IFN-γ/IL Flurospot, and intracellular cytokine staining. FINDINGS: Antibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV-2 - including variants of concern such as Delta or Omicron - was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer-lasting humoral immunity than homologous ChAd immunization. All vaccination regimens induced stable, polyfunctional T-cell responses. INTERPRETATION: These findings demonstrate that heterologous vaccination with ChAd and BNT is a potent alternative to induce humoral and cellular immune protection in comparison to the homologous vaccination regimens. FUNDING: The study was funded by the German Centre for Infection Research (DZIF), the European Union's "Horizon 2020 Research and Innovation Programme" under grant agreement No. 101037867 (VACCELERATE), the "Bayerisches Staatsministerium für Wissenschaft und Kunst" for the CoVaKo-2021 and the For-COVID projects and the Helmholtz Association via the collaborative research program "CoViPa". Further support was obtained from the Federal Ministry of Education and Science (BMBF) through the "Netzwerk Universitätsmedizin", project "B-Fast" and "Cov-Immune". KS is supported by the German Federal Ministry of Education and Research (BMBF, 01KI2013) and the Else Kröner-Stiftung (2020_EKEA.127).


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Vacuna BNT162 , COVID-19/prevención & control , Vacunación , Inmunidad Celular , Anticuerpos Antivirales
7.
Hum Vaccin Immunother ; 17(3): 654-655, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32991231

RESUMEN

A safe and effective vaccine candidate is urgently needed for the ongoing COVID-19 pandemic, caused by SARS-CoV-2. Here we report that recombinant SARS-CoV-2 RBD protein immunization in mice is able to elicit a strong antibody response and potent neutralizing capability as measured using live or pseudotyped SARS-CoV-2 neutralization assays.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Unión Proteica/inmunología , Dominios Proteicos/inmunología , SARS-CoV-2/inmunología , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Pandemias/prevención & control , Proteínas Recombinantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA