Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Analyst ; 149(10): 2784-2795, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38647233

RESUMEN

Patients with end-stage kidney disease (ESKD) rely on dialysis to remove toxins and stay alive. However, hemodialysis alone is insufficient to completely remove all/major uremic toxins, resulting in the accumulation of specific toxins over time. The complexity of uremic toxins and their varying clearance rates across different dialysis modalities poses significant challenges, and innovative approaches such as microfluidics, biomarker discovery, and point-of-care testing are being investigated. This review explores recent advances in the qualitative and quantitative analysis of uremic toxins and highlights the use of innovative methods, particularly label-mediated and label-free surface-enhanced Raman spectroscopy, primarily for qualitative detection. The ability to analyze uremic toxins can optimize hemodialysis settings for more efficient toxin removal. Integration of multiple omics disciplines will also help identify biomarkers and understand the pathogenesis of ESKD, provide deeper understanding of uremic toxin profiling, and offer insights for improving hemodialysis programs. This review also highlights the importance of early detection and improved understanding of chronic kidney disease to improve patient outcomes.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Tóxinas Urémicas , Humanos , Fallo Renal Crónico/terapia , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/diagnóstico , Tóxinas Urémicas/análisis , Progresión de la Enfermedad , Espectrometría Raman/métodos , Biomarcadores/análisis , Biomarcadores/sangre , Diálisis Renal
2.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638608

RESUMEN

The delayed healing response of diabetic wounds is a major challenge for treatment. Negative pressure wound therapy (NPWT) has been widely used to treat chronic wounds. However, it usually requires a long treatment time and results in directional growth of wound healing skin tissue. We investigated whether nonthermal microplasma (MP) treatment can promote the healing of skin wounds in diabetic mice. Splint excision wounds were created on diabetic mice, and various wound healing parameters were compared among MP treatment, NPWT, and control groups. Quantitative analysis of the re-epithelialization percentage by detecting Ki67 and DSG1 expression in the extending epidermal tongue (EET) of the wound area and the epidermal proliferation index (EPI) was subsequently performed. Both treatments promoted wound healing by enhancing wound closure kinetics and wound bed blood flow; this was confirmed through histological analysis and optical coherence tomography. Both treatments also increased Ki67 and DSG1 expression in the EET of the wound area and the EPI to enhance re-epithelialization. Increased Smad2/3/4 mRNA expression was observed in the epidermis layer of wounds, particularly after MP treatment. The results suggest that the Smad-dependent transforming growth factor ß signaling contributes to the enhancement of re-epithelialization after MP treatment with an appropriate exposure time. Overall, a short-term MP treatment (applied for 30 s twice a day) demonstrated comparable or better efficacy to conventional NPWT (applied for 4 h once a day) in promoting wound healing in diabetic mice. Thus, MP treatment exhibits promise for treating diabetic wounds clinically.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Terapia de Presión Negativa para Heridas/métodos , Gases em Plasma/uso terapéutico , Piel/lesiones , Cicatrización de Heridas/fisiología , Animales , Desmogleína 1/metabolismo , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Mutantes , Óxido Nítrico/metabolismo , Regeneración de la Piel con Plasma/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Repitelización/fisiología , Flujo Sanguíneo Regional/fisiología , Transducción de Señal , Piel/patología , Piel/fisiopatología , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de Heridas/genética
3.
Biomacromolecules ; 16(10): 3248-55, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26366749

RESUMEN

Chitosan nanofibers have been electrospun with poly(ethylene oxide) and silver nitrate, as a coelectrospinning polymer and silver nanoparticle precursor, respectively. The average diameter of the as-spun chitosan nanofibers with up to 2 wt % silver nitrate loading was approximately 130 nm, and there was no evidence of bead formation or polymer agglomeration. Argon plasma was then applied for surface etching and synthesis of silver nanoparticles via precursor decomposition. Plasma surface bombardment induced nanoparticle formation primarily on the chitosan nanofiber surfaces, and the moderate surface plasma etching further encouraged maximum exposure of silver nanoparticles. UV-vis spectra showed the surface plasmon resonance signature of silver nanoparticles. The surface-immobilized nanoparticles were visualized by TEM and were found to have average particle diameters as small as 1.5 nm. Surface analysis by infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the interactions between the silver nanoparticles and chitosan molecules, as well as the effect of plasma treatment on the nanofiber surfaces. Finally, a bacteria inhibition study revealed that the antibacterial activity of the electrospun chitosan nanofibers correspondingly increased with the plasma-synthesized silver nanoparticles.


Asunto(s)
Antibacterianos/farmacología , Quitosano/química , Nanopartículas del Metal/química , Nanofibras , Gases em Plasma , Plata/química , Antibacterianos/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
4.
Talanta ; 278: 126466, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38944940

RESUMEN

The COVID-19 pandemic presents global challenges, notably with co-infections in respiratory tract involving SARS-CoV-2 variants and influenza strains. Detecting multiple viruses simultaneously is crucial for accurate diagnosis, effective tracking infectious sources, and containment of the epidemic. This study uses a label-free surface-enhanced Raman spectroscopy (SERS) method using Au NPs/pZrO2 (250) and FIB-made Au NRs (100) to detect dual viruses, including SARS-CoV-2 Delta variant (D) and influenza A (A) or B (B) virus. Results demonstrate distinct peaks facilitating virus differentiation, especially between D and A or B, with clear disparities between substrates; specific peaks at 950 and 1337 cm-1 are pivotal for discerning viruses using Au NPs/pZrO2 (250), while those at 1050, 1394, and 1450 cm-1 and 1033, 1165, 1337, and 1378 cm-1 are key for validation using Au NRs (100). Differences in substrate surface morphology and spatial disposition of accommodating viruses significantly influence hotspot formation and Raman signal amplification efficiency, thereby affecting the ability to distinguish various viruses. Furthermore, both substrates offer insights, even in the presence of oxymetazoline hydrochloride (an interfering substance), with practical implications in viral diagnosis. The customized design and reproducibility underscore efficient Raman signal amplification, even in challenging environments, highlighting potential for widespread virus detection.

5.
Anal Chim Acta ; 1256: 341151, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37037632

RESUMEN

A method using label-free surface enhanced Raman spectroscopy (SERS) based on substrate design is provided for an early detection and differentiation of spike glycoprotein mutation sites in live SARS-CoV-2 variants. Two SERS-active substrates, Au nanocavities (Au NCs) and Au NPs on porous ZrO2 (Au NPs/pZrO2), were used to identify specific peaks of A.3, Alpha, and Delta variants at different concentrations and demonstrated the ability to provide their SERS spectra with detection limits of 0.1-1.0% (or 104-5 copies/mL). Variant identification can be achieved by cross-examining reference spectra and analyzing the substrate-analyte relationship between the suitability of the analyte upon the hotspot(s) formed at high concentrations and the effective detection distance at low concentrations. Mutation sites on the S1 chain of the spike glycoprotein for each variant may be related and distinguishable. This method does not require sample preprocessing and therefore allows for fast screening, which is of high value for more comprehensive and specific studies to distinguish upcoming variants.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , SARS-CoV-2/genética , Oro/química , Nanopartículas del Metal/química , COVID-19/diagnóstico , Espectrometría Raman/métodos , Glicoproteínas
6.
Anal Chim Acta ; 1281: 341910, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38783745

RESUMEN

BACKGROUND: Melanoma is a highly aggressive tumor and a significant cause of skin cancer-related death. Timely diagnosis and treatment require identification of specific biomarkers in exosomes secreted by melanoma cells. In this study, label-free surface-enhanced Raman spectroscopy (SERS) method with size-matched selectivity was used to detect membrane proteins in exosomes released from a stimulated environment of fibroblasts (L929) co-cultured with melanoma cells (B16-F10). To promote normal secretion of exosomes, micro-plasma treatment was used to gently induce the co-cultured cells and slightly increase the stress level around the cells for subsequent detection using the SERS method. RESULTS AND DISCUSSION: Firstly, changes in reactive oxygen species/reactive nitrogen species (ROS/RNS) concentrations in the cellular microenvironment and the viability and proliferation of healthy cells are assessed. Results showed that micro-plasma treatment increased extracellular ROS/RNS levels while modestly reducing cell proliferation without significantly affecting cell survival. Secondly, the particle size of secreted exosomes isolated from the culture medium of L929, B16-F10, and co-cultured cells with different micro-plasma treatment time did not increase significantly under single-cell conditions at short treatment time but might be changed under co-culture condition or longer treatment time. Third, for SERS signals related to membrane protein biomarkers, exosome markers CD9, CD63, and CD81 can be assigned to significant Raman shifts in the range of 943-1030 and 1304-1561 cm-1, while the characteristics SERS peaks of L929 and B16-F10 cells are most likely located at 1394/1404, 1271 and 1592 cm-1 respectively. SIGNIFICANCE AND NOVELTY: Therefore, this micro-plasma-induced co-culture model provides a promising preclinical approach to understand the diagnostic potential of exosomes secreted by cutaneous melanoma/fibroblasts. Furthermore, the label-free SERS method with size-matched selectivity provides a novel approach to screen biomarkers in exosomes secreted by melanoma cells, aiming to reduce the use of labeling reagents and the processing time traditionally required.


Asunto(s)
Técnicas de Cocultivo , Exosomas , Fibroblastos , Espectrometría Raman , Exosomas/metabolismo , Exosomas/química , Fibroblastos/metabolismo , Fibroblastos/citología , Ratones , Animales , Espectrometría Raman/métodos , Gases em Plasma/química , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular , Melanoma/metabolismo , Melanoma/patología , Supervivencia Celular
7.
Anal Chim Acta ; 1193: 339406, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058004

RESUMEN

The COVID-19 pandemic negatively affected the economy and health security on a global scale, causing a drastic change on lifestyle, calling a need to mitigate further transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in the sensitive and rapid detection of various molecules including viruses, through the identification of characteristic peaks of their outer membrane proteins. Accurate detection can be developed through the synergistic integration effect among SERS-active substrate, the appropriate laser wavelength, and the target analyte. In this study, gold nanocavities (Au NC) and Au nanoparticles upon ZrO2 nano-bowls (Au NPs/pZrO2) were tested and used as SERS-active substrates in detecting SARS-CoV-2 pseudovirus containing S protein as a surface capsid glycoprotein (SARS-CoV-2 S pseudovirus) and vesicular stomatitis virus G (VSV-G) pseudo-type lentivirus (VSV-G pseudovirus) to demonstrate their virus detection capability. The optimized Au NCs and Au NPs/pZrO2 substrates were then verified by examining the repetition of measurement, reproducibility, and detection limit. Due to the difference in geometry and composition of the substrates, the characteristic peak-positions of live SARS-CoV-2 S and VSV-G pseudoviruses in the obtained Raman spectra vary, which were also compared with those of inactivated ones. Based on the experimental results, SERS mechanism of each substrate to detect virus is proposed. The formation of hot spots brought by the synergistic integration effect among substrate, analyte, and laser induction may result differences in the obtained SERS spectra.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Oro , Humanos , Pandemias , Reproducibilidad de los Resultados , SARS-CoV-2 , Espectrometría Raman
8.
J Am Chem Soc ; 133(11): 3704-7, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21348459

RESUMEN

Chalcopyrite quaternary semiconductor Cu(In(x)B(1-x))Se(2) nanocrystals have been successfully prepared via a relatively simple and convenient solvothermal route. The effect of different solvents on the formation of the product also indicates that diethylenetriamine is the optimal solvent for this reaction. The device parameters for a single junction Cu(In(x)B(1-x))Se(2) solar cell under AM1.5G are as follows: an open circuit voltage of 265 mV, a short-circuit current of 25.90 mA/cm(2), a fill factor of 34%, and a power conversion efficiency of 2.34%. Based on a series of comparative experiments under different reaction conditions, the probable formation mechanism of crystal Cu(In(x)B(1-x))Se(2) nanorods is proposed.

9.
Biomed Microdevices ; 13(1): 243-53, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20972888

RESUMEN

The goal of this study was to verify that a fully implanted microelectrode with modulated surface may have a reduced rising rate of total impedance and a longer life time. In the previous work, alkanethiolate self-assembled monolayers (SAMs) surface as protein-resistant spacer or cell-repulsive dense-packed spacer has been verified from in vitro experiments. In this study, microelectrodes with the same surface modulation were implanted into the subcutaneous layers of Wistar rats. Nine rats were implanted with the microelectrodes and the total impedance data were measured every 24 h for 2 weeks after implantation. An equivalent electrical circuit model of the electrode-tissue interface was established and parameters were estimated by using an optimization algorithm. Four out of nine rats had manifested acute inflammation reaction and the rests revealed only slight tissue response. Histological examination for the inflammatory group showed fibroblasts, macrophages, and polymorphonuclear leukocytes in adjacent to the electrode contact surface. In the inflammatory group, no significantly difference in total impedance was found in both types of electrodes. However, the trend of total impedance of SAMs-treated electrodes could maintain a steady state value after 1 week. For the non-inflammatory group, both types of electrodes could reduce the impedance value within implanted days. The tissue resistance might be related to the thickness of cells adhered upon the electrode contacts.


Asunto(s)
Alcanos/química , Espectroscopía Dieléctrica/instrumentación , Electrodos Implantados , Oro/química , Imidas/química , Microtecnología/métodos , Polímeros/química , Animales , Adhesión Celular , Inflamación/patología , Masculino , Microelectrodos , Modelos Biológicos , Ratas , Propiedades de Superficie
10.
Nanotechnology ; 22(27): 275101, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21597149

RESUMEN

A nano-mechanical characterization of a multi-layered myelin sheath structure, which enfolds an axon and plays a critical role in the transmission of nerve impulses, is conducted. Schwann cells co-cultured in vitro with PC12 cells for various co-culture times are differentiated to form a myelinated axon, which is then observed using a transmission electron microscope. Three major myelination stages, with distinct structural characteristics and thicknesses around the axon, can be produced by varying the co-culture time. A dynamic contact module and continuous depth-sensing nano-indentation are used on the myelinated structure to obtain the load-on-sample versus measured displacement curve of a multi-layered myelin sheath, which is used to determine the work required for the nano-indentation tip to penetrate the myelin sheath. By analyzing the harmonic contact stiffness versus the measured displacement profile, the results can be used to estimate the three stages of the multi-layered structure on a myelinated axon. The method can also be used to evaluate the development stages of myelination or demyelination during nerve regeneration.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/metabolismo , Nanotecnología/métodos , Animales , Axones/ultraestructura , Núcleo Celular/metabolismo , Forma de la Célula , Técnicas de Cocultivo , Proteínas de la Mielina/metabolismo , Células PC12 , Ratas
11.
Nanotechnology ; 22(18): 185308, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21427472

RESUMEN

The focused ion beam (FIB) technique was used to precisely fabricate patterned Au micro/nanostructures (fibAu). The effects of surface enhanced Raman scattering (SERS) on the fibAu samples were investigated by adjusting the geometrical, dimensional, and spacing factors. The SERS mechanism was evaluated using low-concentration rhodamine 6G (R6G) molecules, physically adsorbed or suspended on/within the micro/nanostructures. The results indicated that for detecting R6G molecules, hexagon-like micro/nanostructures induced a higher electromagnetic mechanism (EM) due to the availability of multiple edges and small curvature. By decreasing the dimensions from 300 to 150 nm, the laser-focused area contained an increasing number of micro/nanostructures and therefore intensified the excitation of SERS signals. Moreover, with an optimized geometry and dimensions of the micro/nanostructures, the relative intensity/surface area value reached a maximum as the spacing was 22 nm. An exponential decrease was found as the spacing was increased, which most probably resulted from the loss of EM. The spacing between the micro/nanostructures upon the fibAu was consequently regarded as the dominant factor for the detection of R6G molecules. By taking an optimized fibAu to detect low-concentration influenza virus, the amino acids from the outermost surface of the virus can be well distinguished through the SERS mechanism.


Asunto(s)
Oro/química , Nanoestructuras/química , Orthomyxoviridae/aislamiento & purificación , Rodaminas/análisis , Espectrometría Raman/métodos , Nanoestructuras/ultraestructura , Infecciones por Orthomyxoviridae/diagnóstico
12.
Materials (Basel) ; 14(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207811

RESUMEN

Steel slag is a secondary product from steelmaking process through alkaline oxygen furnace or electric arc furnace (EAF). The disposal of steel slag has become a thorny environmental protection issue, and it is mainly used as unbound aggregates, e.g., as a secondary component of asphalt concrete used for road paving. In this study, the characteristics of compacted porous steel slag disc (SSD) and its application in phosphorous (P)-rich water filtration are discussed. The SSD with an optimal porosity of 10 wt% and annealing temperature of 900 °C, denoted as SSD-P (10, 900) meets a compressive strength required by ASTM C159-06, which has the capability of much higher than 90% P removal (with the effluent standard < 4 mg P/L) within 3 h, even after eight filtration times. No harmful substances from SSD have been detected in the filtered water, which complies with the effluent standard ISO 14001. The reaction mechanism for P-rich water filtration is mediated by water, followed by two reaction steps-CaO in SSD hydrolyzed from the matrix of SSD to Ca2+ and reacting with PO43-. However, the microenvironment of water is influenced by the pH value of the P-rich water at different filtration times and the kind of P-rich water with different free positive ion that interferes the reactions of the release of Ca2+. This study demonstrates the application of circular economy in reducing steel slag deposits, filtering P-rich water, and collecting Ca3(PO4)2 precipitate into fertilizers.

13.
Biosens Bioelectron ; 181: 113153, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761416

RESUMEN

The COVID-19 pandemic has caused a significant burden since December 2019 that has negatively impacted the global economy owing to the fact that the SARS-CoV-2 virus is fast-transmitting and highly contagious. Efforts have been taken to minimize the impact through strict screening measures in country borders in order to isolate potential virus carriers. Effective fast-screening methods are thus needed to identify infected individuals. The standard diagnostic methods for screening SARS-CoV-2 virus have always been to perform nucleic acid-based and serological tests. However, with each having drawbacks on producing false results at very early or later stage after symptoms onset, supplementary techniques are needed to back up these tests. Surface-enhanced Raman spectroscopy (SERS) as a detection technique has continuously advanced throughout the years in terms of sensitivity and capability to detect ultralow concentration of analytes ranging from single molecule to pathogens, to present as a highly potential alternative to known sensing methods. SERS technology as a candidate for an alternative and supplementary diagnostic method for the viral envelope of SARS-CoV-2 virus is presented, comparing its pros and cons to the standard methods and what other aspects it could offer that the other methods are not capable of. Factors that contribute to the detection effectivity of SERS is also discussed to show the advantages and limitations of this technique. Despite its promising capabilities, challenges like sources of SARS-CoV-2 virus and its variations, reliable SERS spectra, mass production of SERS-active substrates, and compliance to regulations for wide-scale testing scenario are highlighted.


Asunto(s)
Técnicas Biosensibles , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Espectrometría Raman , Humanos , Ácidos Nucleicos , Pandemias
14.
Nanotechnology ; 21(28): 285704, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20585162

RESUMEN

Continuous depth-sensing nano-indentation on living, fixed and dehydrated fibroblast cells was performed using a dynamic contact module and vertically measured from a pre-contact state to the glass substrate. The nano-indentation tip-on-cell approaches took advantage of finding a contact surface, followed by obtaining a continuous nano-mechanical profile along the nano-indentation depths. In the experiment, serial indentations from the leading edge, i.e., the lamellipodium to nucleus regions of living, fixed and dehydrated fibroblast cells were examined. Nano-indentations on a living cell anchored upon glass substrate were competent in finding the tip-on-cell contact surfaces and cell heights. For the result on the fixed and the dehydrated cells, cellular nano-mechanical properties were clearly characterized by continuous harmonic contact stiffness (HCS) measurements. The relations of HCS versus measured displacement, varied from the initial tip-on-cell contact to the glass substrate, were presumably divided into three stages, respectively induced by cellular intrinsic behavior, the substrate-dominant property, and the substrate property. This manifestation is beneficial to elucidate how the underlying substrate influences the interpretation of the nano-mechanical property of thin soft matter on a hard substrate. These findings, based upon continuous depth-sensing nano-indentations, are presumably valuable as a reference to related work, e.g., accomplished by atomic force microscopy.


Asunto(s)
Desecación , Fibroblastos/citología , Vidrio/química , Nanotecnología/métodos , Fijación del Tejido/métodos , Células 3T3 , Agar/farmacología , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Ratones , Microscopía de Fuerza Atómica
15.
Materials (Basel) ; 13(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722410

RESUMEN

In repairing or replacing damaged bones, a dual concentric porous titanium scaffold (P-Tix-y) has emerged as a promising bio-mimic design. Herein, various P-Tix-y were made and sintered with relatively dense (x = 10, 20, or 30% porosity) and loose (y = 45, 55, or 65 porosity) structures. Firstly, NaCl was used as the pore-forming additive and followed by a hydrothermal removal method. The compressive strength of the as-formed P-Tix_y and surface morphology, nanomechanical property, and cells' affinity on the cross-sectioned surface of P-Tix_y (CP-Tix_y) were then characterized. The results demonstrate that the compressive strength of P-Ti10_45, P-Ti20_45, or P-Ti20_55 exhibits a relatively mild decline (e.g., in the range of 181 and 97 MPa, higher than the required value of 70 MPa) and suitable porosities for the intended structure. Nano-hardness on the solid surface of CP-Tix_y shows roughly consistent with that of CP-Ti (i.e., ~8.78 GPa), thus, the porous structure of CP-Tix_y remains mostly unaffected by the addition of NaCl and subsequent sintering process. Most of the surfaces of CP-Tix_y exhibit high fibroblast (L929) cell affinity with low cell mortality. Notably, in the hFOB 1.19 cell adhesion and proliferation test, CP-Ti20_55 and CP-Ti20_65 reveal high cell viability, most probably relating with the assembly of dual porosities with interconnected pores. Overall, the sample P-Ti20_55 provides a relatively load-bearable design with high cell affinity and is thus promising as a three-dimensional bio-scaffold.

16.
Nanotechnology ; 20(19): 195702, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19420646

RESUMEN

Dipalmitoylphosphatic acid was chosen as a model to interpret how molecules physically adsorbed upon glass responded to an infinitesimal oscillation force at the surface contact level. Oscillation of a nano-indentation tip toward the phospholipid layers was driven by a dynamic contact module at a constant harmonic frequency; the phase angle of the oscillation frequency was exponentially relaxed along the nano-scale displacement. The tip-on-molecule contact was thereafter identified and influenced by the characteristic of the physically adsorbed phospholipids. By applying the harmonic displacement of the nano-indentation tip and making a distinction between full contact displacements, the thickness of the phospholipid layers was thereafter estimated. Moreover, the additional force required to penetrate through the physically adsorbed molecules was minor compared to the analogous process for the chemically adsorbed ones. The importance of recognizing the physically adsorbed molecules is relevant to applications of contact mechanics for the distinction of various phospholipids. Furthermore it is very promising to interpret the mechanism by which cells convert mechanical stimuli into biochemical responses on the channels of phospholipids.


Asunto(s)
Vidrio/química , Membrana Dobles de Lípidos/química , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Fosfolípidos/química , Adsorción , Dureza , Pruebas de Dureza , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
17.
Nanomaterials (Basel) ; 9(5)2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31035555

RESUMEN

Health risks posed by the exposure to trace amounts of pesticide residue in agricultural products have gained a lot of concerns, due to their neurotoxic nature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores. The porous zirconia layer (pZrO2) was then deposited with Au NPs, denoted as Au NPs (x)/pZrO2, where x indicates the deposition thickness of Au NPs in nm. In the concave structure of pZrO2, Au-ZrO2 and Au-Au interactions provide a synergistic and physical mechanism of SERS, which is anticipated to collect and amplify SERS signals and thereafter improve the enhancement factor (EF) of Au NPs/pZrO2. By taking Rhodamine 6G (R6G) as the test molecule, EF of Au NPs/pZrO2 might reach to 7.0 × 107. Au NPs (3.0)/pZrO2 was then optimized and competent to detect pesticides, e.g., phosmet and carbaryl at very low concentrations, corresponding to the maximum residue limits of each, i.e., 0.3 ppm and 0.2 ppm, respectively. Au NPs (3.0)/pZrO2 also showed the effectiveness of distinguishing between phosmet and carbaryl under mixed conditions. Due to the strong affinities of the phosphoric groups and sulfur in phosmet to the Au NPs (3.0)/pZrO2, the substrate exhibited selective detection to this particular pesticide. In this study, Au NPs (3.0)/pZrO2 has thus demonstrated trace detection of residual pesticides, due to the substrate design that intended to provide collective amplification of SERS.

18.
Nanomaterials (Basel) ; 9(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835301

RESUMEN

Nanostructures with spikes (NSPs) have been a subject of several surface-enhanced Raman scattering (SERS) applications owing to their significant Raman signal enhancement brought about by the combined effects of interspike coupling and the accumulated induction on the tips of spikes. Thus, NSPs offer great potential as a SERS-active substrate for relevant applications that require a high density of enhanced "hot spots". In this study, Ag NSPs were synthesized in varying degrees of agglomeration and were thereafter deposited onto a transparent adhesive tape as a flexible substrate for SERS applications, specifically, in the detection of trace amounts of pesticides. These flexible substrates were referred to as Ag NSPs/tape and optimized with an enhancement factor (EF) of ca. 1.7 × 107. A strong resulting signal enhancement could be attributed to an optimal degree of agglomeration and, consequently, the distances among/between spikes. Long spikes on the synthesized core of Ag NSPs tend to be loosely spaced, which are suitable in detecting relatively large molecules that could access the spaces among the spikes where "hot spots" are generally formed. Since one side of the transparent tape is adhesive, the paste-and-peel off method was successful in obtaining phosmet and carbaryl residues from apple peels as reflected in the acquired SERS spectra. In situ trace detection of the pesticides at low concentrations down to 10-7 M could be demonstrated. In situ trace detection of mixed pesticides was possible as the characteristic peaks of both pesticides were observed in equimolar mixtures of the analytes at 10-2 to 10-4 M. This study is, thus, premised upon applying for in situ trace detection on e.g., fruit skin.

19.
Nanomaterials (Basel) ; 8(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486259

RESUMEN

Strontium oxide (SrO) deposited onto a porous titanium (Ti)-based scaffold (P-Ti) is a promising and novel approach for high-throughput transesterification. Notably, a highly porous and calcinated scaffold provides a load-bearable support for a continuous process, while the calcinated SrO catalyst, as it is well distributed inside the porous matrix, can extend its surface contact area with the reactant. In this work, the formation of transesterification reaction with the conversion and production of olive oil to biodiesel inside the porous matrix is particularly examined. The as-designed SrO-coated porous titanium (Ti)-based scaffold with 55% porosity was prepared via a hydrothermal procedure, followed by a dip coating method. Mechanical tests of samples were conducted by a nanoindentator, whereas the physical and chemical structures were identified by IR and Raman Spectroscopies. The results implied that SrO catalysts can be firmly deposited onto a load-bearable, highly porous matrix and play an effective role for the transesterification reaction with the oil mass. It is promising to be employed as a load-bearable support for a continuous transesterification process, such as a process for batch or continuous biodiesel production, under an efficient heating source by a focused microwave system.

20.
Nanomaterials (Basel) ; 8(6)2018 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-29865286

RESUMEN

Trace detection of common pesticide residue is necessary to assure safety of fruit and vegetables, given that the potential health risk to consumers is attributed to the contamination of the sources. A simple, rapid and effective means of finding the residue is however required for household purposes. In recent years, the technique in association with surface-enhanced Raman scattering (SERS) has been well developed in particular for trace detection of target molecules. Herein, gold nanoparticles (Au NPs) were integrated with sol-gel spin-coated Zirconia nanofibers (ZrO2 NFs) as a chemically stable substrate and used for SERS application. The morphologies of Au NPs/ZrO2 NFs were adjusted by the precursor concentrations (_X, X = 0.05⁻0.5 M) and the effect of SERS on Au NPs/ZrO2 NFs_X was evaluated by different Raman laser wavelengths using rhodamine 6G as the probe molecule at low concentrations. The target pesticides, phosmet (P1), carbaryl (C1), permethrin (P2) and cypermethrin (C2) were thereafter tested and analyzed. Au NPs/ZrO2 NFs_0.3 exhibited an enhancement factor of 2.1 × 107, which could detect P1, C1, P2 and C2 at the concentrations down to 10-8, 10-7, 10-7 and 10-6 M, respectively. High selectivity to the organophosphates was also found. As the pesticides were dip-coated on an apple and then measured on the diluted juice containing sliced apple peels, the characteristic peaks of each pesticide could be clearly identified. It is thus promising to use NPs/ZrO2 NFs_0.3 as a novel SERS-active substrate for trace detection of pesticide residue upon, for example, fruits or vegetables.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA