Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 15(16): e1900511, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30913375

RESUMEN

Transformable liquid metal (LM)-based materials have attracted considerable research interest in biomedicine. However, the potential biomedical applications of LMs have not yet been fully explored. Herein, for the first trial, the inductive heating property of gallium-indium eutectic alloy (EGaIn) under alterative magnetic field is systematically investigated. By virtue of its inherent metallic nature, LM possesses excellent magnetic heating property as compared to the conventional magnetite nanoparticles, therefore enabling its unique application as non-magnetic agents in magnetic hyperthermia. Moreover, the extremely high surface tension of LM could be dramatically lowered by a rather facile PEGylation approach, making LM an ideal carrier for other theranostic cargos. By incorporating doxorubicin (DOX)-loaded mesoporous silica (DOX-MS) within PEGylated LM, a magnetic field-driven transformable LM hybrid platform capable of pH/AFM dual stimuli-responsive drug release and magnetic thermochemotherapy are successfully fabricated. The potential application for breast cancer treatment is demonstrated. Furthermore, the large X-ray attenuation ability of LM endows the hybrid with the promising ability for CT imaging. This work explores a new biomedical use of LM and a promising cancer treatment protocol based on LM hybrid for magnetic hyperthermia combined with dual stimuli-responsive chemotherapy and CT imaging.


Asunto(s)
Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Hipertermia Inducida/métodos , Campos Magnéticos , Nanomedicina Teranóstica/métodos , Animales , Materiales Biocompatibles , Liberación de Fármacos , Femenino , Humanos , Células MCF-7 , Magnetismo , Nanopartículas de Magnetita , Metales/química , Ratones , Dióxido de Silicio/química
2.
J Hazard Mater ; 382: 121082, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472467

RESUMEN

In this study, low-cost and eco-friendly hydroxyapatite (HA) minerals were extracted from scales of Tilapia fish (Oreochromis mossambicus). After calcination, fish-scale extracted powder was further confirmed to be HA by X-ray diffraction with mean particle size of 5.96 µm determined by particle size analyzer. The calcined powder was utilized as the raw material and combined with chitosan (CS) to synthesize composite scaffolds by freeze casting and cross-linking. Mercury porosimetry results showed that the scaffolds possessed hierarchical porous structure. Microstructural features characterized by SEM revealed unidirectional channel structures with channel sizes ranged from 10 to 100 µm and 1 to 50  µm for scaffolds freeze-casted at 2 ℃/min and 5 ℃/min cooling rates, respectively. The adsorption kinetics of HA/CS composite scaffolds with varying channel sizes were investigated by both batch and fixed-bed processes with different Pb(П) initial concentrations (100 and 1000 mg/L). The adsorption capability was optimized by tuning the cooling rates and the maximum adsorption amount could reach 75-570 mg/g in batch process and 94 mg/g in fixed bed process. In summary, the HA/CS composite scaffolds showed great capability to remove heavy metal ions from waste water and their tunable channel sizes could be applied in suitable fields under both statistic and flowing conditions.


Asunto(s)
Escamas de Animales , Quitosano/química , Durapatita/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Adsorción , Animales , Congelación , Plomo/química , Tilapia , Contaminantes Químicos del Agua/química
3.
Colloids Surf B Biointerfaces ; 179: 48-55, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30947083

RESUMEN

Collagen fibrillogenesis is of special significance for the maintenance of collagen scaffold's mechanical stability and biological performance. Comprehensive information about the mechanism of collagen fibrillogenesis in vitro, as well as the effect of fibrillogenesis on deposited layers of ordered collagen molecules for cellular behavior regulation is thus crucial. In the current study, the pH, phosphate ion as well as reconstitution time impacting on the in vitro fibrillogenesis was systematically investigated, including the zeta potential and turbidity measurement. Furthermore, the fibrillogenesis impacting on the π-a isotherms of collagen assembly at the air/water interface was then fully evaluated. By applying LB technique, collagen fibril-assembling arrays structure can be successfully transferred to form surface deposition onto the mica and glass substrate. The morphology and collagen content were subsequently assessed by atomic force microscopy (AFM) and hydrolyzing examination respectively. Effect of collagen LB deposition on the adhesion and proliferation of SD rat bone marrow mesenchymal stem cells were estimated by Rhodamine Phalloidin/DIPI staining and CCK8 proliferation assays. The results show that highly oriented and collagen-abundant thin film can further facilitate cell adhesion and proliferation, indicating an innovative direction for tissue engineering.


Asunto(s)
Colágeno/farmacología , Células Madre Mesenquimatosas/citología , Animales , Bovinos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno/química , Concentración de Iones de Hidrógeno , Células Madre Mesenquimatosas/efectos de los fármacos , Nefelometría y Turbidimetría , Presión , Ratas Sprague-Dawley , Electricidad Estática , Propiedades de Superficie , Temperatura
4.
Theranostics ; 8(12): 3284-3307, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29930730

RESUMEN

In the past decade, iron oxide nanoparticles (IONPs) have attracted more and more attention for their excellent physicochemical properties and promising biomedical applications. In this review, we summarize and highlight recent progress in the design, synthesis, biocompatibility evaluation and magnetic theranostic applications of IONPs, with a special focus on cancer treatment. Firstly, we provide an overview of the controlling synthesis strategies for fabricating zero-, one- and three-dimensional IONPs with different shapes, sizes and structures. Then, the in vitro and in vivo biocompatibility evaluation and biotranslocation of IONPs are discussed in relation to their chemo-physical properties including particle size, surface properties, shape and structure. Finally, we also highlight significant achievements in magnetic theranostic applications including magnetic resonance imaging (MRI), magnetic hyperthermia and targeted drug delivery. This review provides a background on the controlled synthesis, biocompatibility evaluation and applications of IONPs as cancer theranostic agents and an overview of the most up-to-date developments in this area.


Asunto(s)
Fenómenos Químicos , Compuestos Férricos , Magnetismo/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA