Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Ther ; 24(5): 867-76, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26857842

RESUMEN

We previously reported that subretinal injection of AAV2/5 RK.cpde6ß allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6ß deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Terapia Genética/métodos , Degeneración Retiniana/terapia , Células Fotorreceptoras Retinianas Bastones/patología , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/deficiencia , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Vectores Genéticos/administración & dosificación , Humanos , Retina/fisiopatología , Degeneración Retiniana/genética , Degeneración Retiniana/patología
2.
Mol Ther ; 22(2): 265-277, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24091916

RESUMEN

For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18-72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22-29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone-rod dystrophy provides great promise for human treatment.


Asunto(s)
Proteínas del Ojo/genética , Terapia Genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , Animales Modificados Genéticamente , Dependovirus/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perros , Expresión Génica , Técnicas de Inactivación de Genes , Orden Génico , Técnicas de Transferencia de Gen , Genes Reporteros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Regiones Promotoras Genéticas , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/patología , Transducción Genética , Resultado del Tratamiento
3.
Mol Ther ; 20(11): 2019-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22828504

RESUMEN

Defects in the ß subunit of rod cGMP phosphodiesterase 6 (PDE6ß) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6ß deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6ß (n = 4) or AAV2/8RK.cpde6ß (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6ß- and AAV2/8RK.cpde6ß-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/deficiencia , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Retinitis Pigmentosa/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Electrorretinografía , Terapia Genética , Vectores Genéticos , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recuperación de la Función , Retina/metabolismo , Retina/patología , Retina/fisiopatología , Vasos Retinianos/patología , Retinitis Pigmentosa/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes , Resultado del Tratamiento , Visión Ocular
4.
Mol Ther Methods Clin Dev ; 28: 387-393, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36874242

RESUMEN

The subretinal injection protocol for the only approved retinal gene therapy (voretigene neparvovec-rzyl) includes air tamponade at the end of the procedure, but its effects on the subretinal bleb have not been described. In the present study, we evaluated the distribution of enhanced green fluorescent protein (EGFP) after subretinal injection of AAV2 in non-human primates (NHP) without (group A = 3 eyes) or with (group B = 3 eyes) air tamponade. The retinal expression of EGFP was assessed 1 month after subretinal injection with in vivo fundus photographs and fundus autofluorescence. In group A (without air), EGFP expression was limited to the area of the initial subretinal bleb. In group B (with air), EGFP was expressed in a much wider area. These data show that the buoyant force of air on the retina causes a wide subretinal diffusion of vector, away from the injection site. In the present paper, we discuss the beneficial and deleterious clinical effects of this finding. Whereas subretinal injection is likely to become more common with the coming of new gene therapies, the effects of air tamponade should be explored further to improve efficacy, reproducibility, and safety of the protocol.

5.
Mol Ther ; 18(6): 1085-93, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20354505

RESUMEN

In previous studies, we demonstrated that recombinant adeno-associated virus (rAAV)-mediated gene transfer of the doxycycline (Dox)-regulatable system allows for the regulation of erythropoietin (EPO) expression in the retina of nonhuman primates after intravenous or oral administration of Dox. In addition, it was shown that administrating different amounts of Dox resulted in a dose-response dynamic of transgene expression. Adeno-associated viral gene therapy has raised hope for the treatment of patients with Leber congenital amaurosis, caused by mutations in the retinal pigment epithelium (RPE)-specific gene RPE65. The preliminary results of three clinical trials suggest some improvement in visual function. However, further improvements might be necessary to optimize vision recovery and this means developing vectors able to generate transgene expression at physiological levels. The purpose of this study was to investigate the ability of the Dox-regulatable system to regulate retinal function in RPE65(-/-) Briard dogs. rAAV vectors expressing RPE65 under the control of either the TetOff and TetOn Dox-regulated promoters or the cytomegalovirus (CMV) constitutive promoter were generated and administered subretinally to seven RPE65-deficient dogs. We demonstrate that the induction and deinduction of retinal function, as assessed by electroretinography (ERG), can be achieved using a Dox-regulatable system, but do not lead to any recovery of vision.


Asunto(s)
Dependovirus/genética , Doxiciclina/farmacología , Proteínas del Ojo/genética , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos , Retina/fisiopatología , Trastornos de la Visión/terapia , Animales , Perros , Trastornos de la Visión/fisiopatología
6.
Mol Vis ; 15: 349-61, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19223988

RESUMEN

PURPOSE: To evaluate the RPGRIP1-deficient miniature longhaired dachshund (MLHD) dog as a potential candidate for gene therapy. METHODS: Six RPGRIP1-deficient MLHD dogs from our dog colony have been observed for two years using a variety of noninvasive procedures. These included bilateral full-field electroretinograms (ERG) to evaluate retinal function, fundus photographs to evaluate retinal vascularization, and optical coherence tomographs (OCT) to evaluate retinal thickness. We also performed histological examination of hematoxylin- and eosin-stained retinal sections as well as sections labeled in situ by the terminal dUTP nick end labeling (TUNEL) method. RESULTS: ERG findings showed that as early as 2 months of age, cone function was lost while rod function was preserved. However, by 9 months of age, both cone and rod functions could not be detected. Functional visual assessment based on the ability to avoid obstacles showed that vision was retained up to the age of 11 months. Both OCT and histopathology studies revealed a progressive thinning of the outer nuclear layer (ONL) over the first 2 years of age. TUNEL labeling identified apoptotic photoreceptor cell death as the cause of this thinning of the ONL. CONCLUSIONS: A treatment strategy should consist in initiating gene therapy as early as possible after birth to prevent or delay the loss of rod function. In the MLHD, successful subretinal delivery of a therapeutic vector is feasible at 2 months of age and may prevent or delay the loss of rod function.


Asunto(s)
Ceguera , Modelos Animales de Enfermedad , Perros/genética , Terapia Genética , Proteínas/genética , Retina/patología , Animales , Animales Modificados Genéticamente , Apoptosis , Ceguera/genética , Ceguera/patología , Ceguera/terapia , Electrorretinografía , Técnica del Anticuerpo Fluorescente , Fondo de Ojo , Etiquetado Corte-Fin in Situ , Distribución Normal , Proteínas/metabolismo , Retina/citología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Vasos Retinianos , Tomografía de Coherencia Óptica , Visión Ocular/genética
7.
Hum Gene Ther Methods ; 27(3): 122-34, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27229628

RESUMEN

Recombinant adeno-associated virus (AAV) has emerged as a promising vector for retinal gene delivery to restore visual function in certain forms of inherited retinal dystrophies. Several studies in rodent models have shown that intravitreal injection of the AAV2/2 vector is the optimal route for efficient retinal ganglion cell (RGC) transduction. However, translation of these findings to larger species, including humans, is complicated by anatomical differences in the eye, a key difference being the comparatively smaller volume of the vitreous chamber in rodents. Here, we address the role of the vitreous body as a potential barrier to AAV2/2 diffusion and transduction in the RGCs of dogs and macaques, two of the most relevant preclinical models. We intravitreally administered the AAV2/2 vector carrying the CMV-eGFP reporter cassette in dog and macaque eyes, either directly into the vitreous chamber or after complete vitrectomy, a surgical procedure that removes the vitreous body. Our findings suggest that the vitreous body appears to trap the injected vector, thus impairing the diffusion and transduction of AAV2/2 to inner retinal neurons. We show that vitrectomy before intravitreal vector injection is an effective means of overcoming this physical barrier, improving the transduction of RGCs in dog and macaque retinas. These findings support the use of vitrectomy in clinical trials of intravitreal gene transfer techniques targeting inner retinal neurons.


Asunto(s)
Terapia Genética , Vectores Genéticos/uso terapéutico , Células Ganglionares de la Retina , Animales , Dependovirus/genética , Perros , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes , Humanos , Inyecciones Intravítreas , Macaca , Retina/patología , Retina/trasplante , Transducción Genética , Vitrectomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA