Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(11): 116105, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-37001088

RESUMEN

We present our discovery of switchable high explosives (HEs) as a new class of energetic material that cannot detonate unless filled with a fluid. The performance of fluid-filled additive-manufactured HE lattices is herein evaluated by analysis of detonation velocity and Gurney energy. The Gurney energy of the unfilled lattice was 98% lower than that of the equivalent water-filled lattice and changing the fluid mechanical properties allowed tuning of the Gurney energy and detonation velocity by 8.5% and 13.4%, respectively. These results provide, for the first time since the development of HEs, a method to completely remove the hazard of unplanned detonations during storage and transport.

2.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117194

RESUMEN

Dielectric breakdown is an example of a natural phenomenon that occurs on very short time scales, making it incredibly difficult to capture optical images of the process. Event initiation jitter is one of the primary challenges, as even a microsecond of jitter time can cause the imaging attempt to fail. Initial attempts to capture images of dielectric breakdown using a gigahertz frame rate camera and an exploding bridge wire initiation were stymied by high initiation jitter. Subsequently, a novel optical delay line apparatus was developed in order to effectively circumvent the jitter and reliably image dielectric breakdown. The design and performance of the optical delay line apparatus are presented. The optical delay line increased the image capture success rate from 25% to 94% while also permitting enhanced temporal resolution and has application in imaging other high-jitter, extremely fast phenomena.

3.
ACS Omega ; 7(3): 2842-2849, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35097280

RESUMEN

The aging of high explosives in an ionizing radiation field is not well understood, and little work has been done in the low dose and low dose rate regime. In this study, four explosives were exposed to low-level gamma irradiation from a 137Cs source: PETN, PATO, and PBX 9501 both with and without the Irganox 1010 stabilizer. Post-irradiation analysis included GC-MS of the headspace gas, SEM of the pellets and powder, NMR spectroscopy, DSC analysis, impact sensitivity tests, and ESD sensitivity tests. Overall, no significant change to the materials was seen for the dose and dose rate explored in this study. A small change in the 1H NMR spectrum of PETN was observed and SEM and ESD results suggest a surface energy change in PATO, but these differences are minor and do not appear to have a substantial impact on the handling safety.

4.
ACS Appl Mater Interfaces ; 13(1): 1204-1213, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33356086

RESUMEN

While bulk gold is generally considered to be a catalytically inactive material, nanostructured forms of gold can in fact be highly catalytically active. However, few methods exist for preparing high-purity macroscopic forms of catalytically active gold. In this work, we describe the synthesis of catalytically active macroscopic nanoporous gold foams via combustion synthesis of gold bis(tetrazolato)amine complexes. The resulting metallically pure porous gold nanoarchitectures exhibit bulk densities of <0.1 g/cm3 and Brunauer-Emmett-Teller (BET) surface areas as high as 10.9 m2/g, making them among the lowest-density and highest-surface-area monolithic forms of gold produced to date. Thanks to the presence of a highly nanostructured gold surface, such gold nanofoams have also been found to be highly catalytically active toward thermal chemical vapor deposition (CVD) growth of carbon nanotubes, providing a novel method for direct synthesis of carbon nanostructures on macroscopic gold substrates. In contrast, analogous copper nanofoams were found to be catalytically inactive toward the growth of graphitic nanostructures under the same synthesis conditions, highlighting the unusually high catalytic propensity of this form factor of gold. The combustion synthesis process described herein represents a never-wet approach for directly synthesizing macroscopic catalytically active gold. Unlike sol-gel and dealloying approaches, combustion synthesis eliminates the time-consuming diffusion-mediated steps associated with previous methods and offers multiple degrees of freedom for tuning morphology, electrical conductivity, and mechanical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA