Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 604(7907): 763-770, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418678

RESUMEN

Adhesion G-protein-coupled receptors (aGPCRs) are important for organogenesis, neurodevelopment, reproduction and other processes1-6. Many aGPCRs are activated by a conserved internal (tethered) agonist sequence known as the Stachel sequence7-12. Here, we report the cryogenic electron microscopy (cryo-EM) structures of two aGPCRs in complex with Gs: GPR133 and GPR114. The structures indicate that the Stachel sequences of both receptors assume an α-helical-bulge-ß-sheet structure and insert into a binding site formed by the transmembrane domain (TMD). A hydrophobic interaction motif (HIM) within the Stachel sequence mediates most of the intramolecular interactions with the TMD. Combined with the cryo-EM structures, biochemical characterization of the HIM motif provides insight into the cross-reactivity and selectivity of the Stachel sequences. Two interconnected mechanisms, the sensing of Stachel sequences by the conserved 'toggle switch' W6.53 and the constitution of a hydrogen-bond network formed by Q7.49/Y7.49 and the P6.47/V6.47φφG6.50 motif (φ indicates a hydrophobic residue), are important in Stachel sequence-mediated receptor activation and Gs coupling. Notably, this network stabilizes kink formation in TM helices 6 and 7 (TM6 and TM7, respectively). A common Gs-binding interface is observed between the two aGPCRs, and GPR114 has an extended TM7 that forms unique interactions with Gs. Our structures reveal the detailed mechanisms of aGPCR activation by Stachel sequences and their Gs coupling.


Asunto(s)
Péptidos , Receptores Acoplados a Proteínas G , Sitios de Unión , Microscopía por Crioelectrón , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
2.
Nucleic Acids Res ; 52(7): 3823-3836, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38421639

RESUMEN

Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.


Asunto(s)
Empalme Alternativo , Secuenciación de Nucleótidos de Alto Rendimiento , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Transcriptoma/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Exones/genética , Dominios Proteicos
3.
Pharmacol Rev ; 73(1): 89-119, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219147

RESUMEN

There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Mutación , Fenotipo , Receptores Acoplados a Proteínas G/genética
4.
J Biol Chem ; 298(6): 101949, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35447113

RESUMEN

We recently demonstrated that GPR133 (ADGRD1), an adhesion G protein-coupled receptor involved in raising cytosolic cAMP levels, is necessary for growth of glioblastoma (GBM) and is de novo expressed in GBM relative to normal brain tissue. Our previous work suggested that dissociation of autoproteolytically generated N-terminal and C-terminal fragments of GPR133 at the plasma membrane correlates with receptor activation and signaling. To promote the goal of developing biologics that modulate GPR133 function, we investigated the effects of antibodies against the N-terminus of GPR133 on receptor signaling. Here, we show that treatment of HEK293T cells overexpressing GPR133 with these antibodies increased cAMP levels in a concentration-dependent manner. Analysis of culture medium following antibody treatment further indicated the presence of complexes of these antibodies with the autoproteolytically cleaved N-terminal fragments of GPR133. In addition, cells expressing a cleavage-deficient mutant of GPR133 (H543R) did not respond to antibody stimulation, suggesting that the effect is cleavage dependent. Finally, we demonstrate the antibody-mediated stimulation of WT GPR133, but not the cleavage-deficient H543R mutant, was reproducible in patient-derived GBM cells. These findings provide a paradigm for modulation of GPR133 function with biologics and support the hypothesis that the intramolecular cleavage in the N-terminus modulates receptor activation and signaling.


Asunto(s)
Anticuerpos , Glioblastoma , Receptores Acoplados a Proteínas G , Anticuerpos/metabolismo , Anticuerpos/farmacología , Glioblastoma/metabolismo , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Pharmacol Res ; 197: 106971, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032292

RESUMEN

The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes.


Asunto(s)
Evolución Biológica , Transducción de Señal , Sitios de Unión , Dominios Proteicos
6.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203462

RESUMEN

G protein-coupled receptors (GPCRs) and their downstream signaling pathways are critical targets for current pharmacotherapy [...].

7.
Am J Physiol Cell Physiol ; 322(6): C1047-C1060, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417266

RESUMEN

Incorporating mechanical cues into cellular responses allows us to experience our direct environment. Specialized cells can perceive and discriminate between different physical properties such as level of vibration, temperature, or pressure. Mechanical forces are abundant signals that also shape general cellular responses such as cytoskeletal rearrangement, differentiation, or migration and contribute to tissue development and function. The molecular structures that perceive and transduce mechanical forces are specialized cytoskeletal proteins, cell junction molecules, and membrane proteins such as ion channels and metabotropic receptors. G protein-coupled receptors (GPCRs) have attracted attention as metabotropic force receptors as they are among the most important drug targets. This review summarizes the function of mechano-sensitive GPCRs, specifically, the angiotensin II type 1 receptor and adrenergic, apelin, histamine, parathyroid hormone 1, and orphan receptors, focusing particularly on the advanced knowledge gained from adhesion-type GPCRs. We distinguish between shear stress and cell swelling/stretch as the two major types of mechano-activation of these receptors and contemplate the potential contribution of the force-from-lipid and force-from-tether models that have previously been suggested for ion channels.


Asunto(s)
Canales Iónicos , Receptores Acoplados a Proteínas G , Fenómenos Mecánicos , Proteínas de la Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estrés Mecánico
8.
J Biol Chem ; 296: 100798, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34022221

RESUMEN

GPR133 (ADGRD1), an adhesion G protein-coupled receptor (GPCR) whose canonical signaling activates GαS-mediated generation of cytosolic cAMP, has been shown to be necessary for the growth of glioblastoma (GBM), a brain malignancy. The extracellular N terminus of GPR133 is thought to be autoproteolytically cleaved into N-terminal and C- terminal fragments (NTF and CTF, respectively). However, the role of this cleavage in receptor activation remains unclear. Here, we used subcellular fractionation and immunoprecipitation approaches to show that the WT GPR133 receptor is cleaved shortly after protein synthesis and generates significantly more canonical signaling than an uncleavable point mutant GPR133 (H543R) in patient-derived GBM cultures and HEK293T cells. After cleavage, the resulting NTF and CTF remain noncovalently bound to each other until the receptor is trafficked to the plasma membrane, where we demonstrated NTF-CTF dissociation occurs. Using a fusion of the CTF of GPR133 and the N terminus of thrombin-activated human protease-activated receptor 1 as a controllable proxy system to test the effect of intramolecular cleavage and dissociation, we also showed that thrombin-induced cleavage and shedding of the human protease-activated receptor 1 NTF increased intracellular cAMP levels. These results support a model wherein dissociation of the NTF from the CTF at the plasma membrane promotes GPR133 activation and downstream signaling. These findings add depth to our understanding of the molecular life cycle and mechanism of action of GPR133 and provide critical insights that will inform therapeutic targeting of GPR133 in GBM.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , AMP Cíclico/metabolismo , Glioblastoma/metabolismo , Humanos , Proteolisis , Receptores Acoplados a Proteínas G/química , Células Tumorales Cultivadas
9.
Biol Chem ; 403(2): 195-209, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34218541

RESUMEN

G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.


Asunto(s)
Islotes Pancreáticos , Receptores Acoplados a Proteínas G , Tejido Adiposo , Sistema Nervioso Central , Transducción de Señal
10.
Molecules ; 27(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630584

RESUMEN

The very large G-protein-coupled receptor 1 (VLGR1/ADGRV1) is the largest member of the adhesion G-protein-coupled receptor (ADGR) family. Mutations in VLGR1/ADGRV1 cause human Usher syndrome (USH), a form of hereditary deaf-blindness, and have been additionally linked to epilepsy. In the absence of tangible knowledge of the molecular function and signaling of VLGR1, the pathomechanisms underlying the development of these diseases are still unknown. Our study aimed to identify novel, previously unknown protein networks associated with VLGR1 in order to describe new functional cellular modules of this receptor. Using affinity proteomics, we have identified numerous new potential binding partners and ligands of VLGR1. Tandem affinity purification hits were functionally grouped based on their Gene Ontology terms and associated with functional cellular modules indicative of functions of VLGR1 in transcriptional regulation, splicing, cell cycle regulation, ciliogenesis, cell adhesion, neuronal development, and retinal maintenance. In addition, we validated the identified protein interactions and pathways in vitro and in situ. Our data provided new insights into possible functions of VLGR1, related to the development of USH and epilepsy, and also suggest a possible role in the development of other neuronal diseases such as Alzheimer's disease.


Asunto(s)
Proteómica , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Retina/metabolismo , Transducción de Señal
11.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204297

RESUMEN

Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer development and tumor progression. Thus, this family of proteins serves as an attractive drug target. The activation of SFKs can occur via multiple signaling pathways, yet many of them are poorly understood. Here, we summarize the current knowledge on G protein-coupled receptor (GPCR)-mediated regulation of SFKs, which is of considerable interest because GPCRs are among the most widely used pharmaceutical targets. This type of activation can occur through a direct interaction between the two proteins or be allosterically regulated by arrestins and G proteins. We postulate that a rearrangement of binding motifs within the active conformation of arrestin-3 mediates Src regulation by comparison of available crystal structures. Therefore, we hypothesize a potentially different activation mechanism compared to arrestin-2. Furthermore, we discuss the probable direct regulation of SFK by GPCRs and investigate the intracellular domains of exemplary GPCRs with conserved polyproline binding motifs that might serve as scaffolding domains to allow such a direct interaction. Large intracellular domains in GPCRs are often understudied and, in general, not much is known of their contribution to different signaling pathways. The suggested direct interaction between a GPCR and a SFK could allow for a potential immediate allosteric regulation of SFKs by GPCRs and thereby unravel a novel mechanism of SFK signaling. This overview will help to identify new GPCR-SFK interactions, which could serve to explain biological functions or be used to modulate downstream effectors.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Arrestinas/química , Arrestinas/metabolismo , Activación Enzimática , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
12.
Int J Obes (Lond) ; 44(10): 2124-2136, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32203115

RESUMEN

BACKGROUND: G protein-coupled receptors (GPCR) are well-characterized regulators of a plethora of physiological functions among them the modulation of adipogenesis and adipocyte function. The class of Adhesion GPCR (aGPCR) and their role in adipose tissue, however, is poorly studied. With respect to the demand for novel targets in obesity treatment, we present a comprehensive study on the expression and function of this enigmatic GPCR class during adipogenesis and in mature adipocytes. METHODS: The expression of all aGPCR representatives was determined by reanalyzing RNA-Seq data and by performing qPCR in different mouse and human adipose tissues under low- and high-fat conditions. The impact of aGPCR expression on adipocyte differentiation and lipid accumulation was studied by siRNA-mediated knockdown of all expressed members of this receptor class. The biological characteristics and function of mature adipocytes lacking selected aGPCR were analyzed by mass spectrometry and biochemical methods (lipolysis, glucose uptake, adiponectin secretion). RESULTS: More than ten aGPCR are significantly expressed in visceral and subcutaneous adipose tissues and several aGPCR are differentially regulated under high-caloric conditions in human and mouse. Receptor knockdown of six receptors resulted in an impaired adipogenesis indicating their expression is essential for proper adipogenesis. The altered lipid composition was studied in more detail for two representatives, ADGRG2/GPR64 and ADGRG6/GPR126. While GPR126 is mainly involved in adipocyte differentiation, GPR64 has an additional role in mature adipocytes by regulating metabolic processes. CONCLUSIONS: Adhesion GPCR are significantly involved in qualitative and quantitative adipocyte lipid accumulation and can control lipolysis. Factors driving adipocyte formation and function are governed by signaling pathways induced by aGPCR yielding these receptors potential targets for treating obesity.


Asunto(s)
Adipocitos/fisiología , Adipogénesis , Receptores Acoplados a Proteínas G/fisiología , Células 3T3-L1 , Animales , Humanos , Metabolismo de los Lípidos , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , RNA-Seq
13.
J Biol Chem ; 292(11): 4383-4394, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28154189

RESUMEN

Members of the adhesion G protein-coupled receptor (aGPCR) family carry an agonistic sequence within their large ectodomains. Peptides derived from this region, called the Stachel sequence, can activate the respective receptor. As the conserved core region of the Stachel sequence is highly similar between aGPCRs, the agonist specificity of Stachel sequence-derived peptides was tested between family members using cell culture-based second messenger assays. Stachel peptides derived from aGPCRs of subfamily VI (GPR110/ADGRF1, GPR116/ADGRF5) and subfamily VIII (GPR64/ADGRG2, GPR126/ADGRG6) are able to activate more than one member of the respective subfamily supporting their evolutionary relationship and defining them as pharmacological receptor subtypes. Extended functional analyses of the Stachel sequences and derived peptides revealed agonist promiscuity, not only within, but also between aGPCR subfamilies. For example, the Stachel-derived peptide of GPR110 (subfamily VI) can activate GPR64 and GPR126 (both subfamily VIII). Our results indicate that key residues in the Stachel sequence are very similar between aGPCRs allowing for agonist promiscuity of several Stachel-derived peptides. Therefore, aGPCRs appear to be pharmacologically more closely related than previously thought. Our findings have direct implications for many aGPCR studies, as potential functional overlap has to be considered for in vitro and in vivo studies. However, it also offers the possibility of a broader use of more potent peptides when the original Stachel sequence is less effective.


Asunto(s)
Péptidos/química , Péptidos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Pollos , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Mutación , Filogenia , Dominios Proteicos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos
14.
Pharmacol Rev ; 67(2): 338-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25713288

RESUMEN

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , AMP Cíclico/fisiología , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Sistemas de Mensajero Secundario , Animales , Adhesión Celular , Moléculas de Adhesión Celular/química , Membrana Celular/enzimología , Membrana Celular/metabolismo , Movimiento Celular , Humanos , Agencias Internacionales , Ligandos , Farmacología/tendencias , Farmacología Clínica/tendencias , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/clasificación , Transducción de Señal , Sociedades Científicas , Terminología como Asunto
15.
FASEB J ; 30(2): 666-73, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26499266

RESUMEN

Adhesion GPCRs (aGPCRs) form the second largest, yet most enigmatic class of the GPCR superfamily. Although the physiologic importance of aGPCRs was demonstrated in several studies, the majority of these receptors is still orphan with respect to their agonists and signal transduction. Recent studies reported that aGPCRs are activated through a tethered peptide agonist, coined the Stachel sequence. The Stachel sequence is the most C-terminal part of the highly conserved GPCR autoproteolysis-inducing domain. Here, we used cell culture-based assays to investigate 2 natural splice variants within the Stachel sequence of the orphan Gs coupling aGPCR GPR114/ADGRG5. There is 1 variant constitutively active in cAMP assays (∼25-fold over empty vector) and sensitive to mechano-activation. The other variant has low basal activity in cAMP assays (6-fold over empty vector) and is insensitive to mechano-activation. In-depth mutagenesis studies of these functional differences revealed that the N-terminal half of the Stachel sequence confers the agonistic activity, whereas the C-terminal part orientates the agonistic core sequence to the transmembrane domain. Sequence comparison and functional testing suggest that the proposed mechanism of Stachel-mediated activation is relevant not only to GPR114 but to aGPCRs in general.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Ratones , Familia de Multigenes , Mutación , Isoformas de Proteínas , Receptores Acoplados a Proteínas G/genética , Distribución Tisular
16.
BMC Genomics ; 17(1): 609, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27516204

RESUMEN

BACKGROUND: A large number of human inherited and acquired diseases and phenotypes are caused by mutations in G protein-coupled receptors (GPCR). Genome-wide association studies (GWAS) have shown that variations in the ADGRD1 (GPR133) locus are linked with differences in metabolism, human height and heart frequency. ADGRD1 is a Gs protein-coupled receptor belonging to the class of adhesion GPCRs. RESULTS: Analysis of more than 1000 sequenced human genomes revealed approximately 9000 single nucleotide polymorphisms (SNPs) in the human ADGRD1 as listed in public data bases. Approximately 2.4 % of these SNPs are located in exons resulting in 129 non-synonymous SNPs (nsSNPs) at 119 positions of ADGRD1. However, the functional relevance of those variants is unknown. In-depth characterization of these amino acid changes revealed several nsSNPs (A448D, Q600stop, C632fs [frame shift], A761E, N795K) causing full or partial loss of receptor function, while one nsSNP (F383S) significantly increased basal activity of ADGRD1. CONCLUSION: Our results show that a broad spectrum of functionally relevant ADGRD1 variants is present in the human population which may cause clinically relevant phenotypes, while being compatible with life when heterozygous.


Asunto(s)
Genoma Humano , Mutación , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Sustitución de Aminoácidos , Animales , Enfermedades Asintomáticas , Estatura/genética , Células COS , Chlorocebus aethiops , Bases de Datos Genéticas , Exones , Expresión Génica , Estudio de Asociación del Genoma Completo , Células HEK293 , Frecuencia Cardíaca/genética , Humanos
17.
Handb Exp Pharmacol ; 234: 111-125, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832486

RESUMEN

Adhesion GPCRs harbor a tethered agonist sequence (reproduced from [24]) As the past years have seen a magnificent increase in knowledge on adhesion GPCR (aGPCR) signal transduction, the time had come to fill the gap on how these receptors can be activated. Based on experimental observations that deletion of the ectodomain can induce signaling, the idea arose that aGPCRs, just like other atypical GPCRs, may harbor a tethered agonist sequence. In this chapter, we describe the recent findings and characteristics of this agonist, called the Stachel sequence, and discuss potential mechanisms that cause liberation of this encrypted sequence. Further, we provide perspectives for application of Stachel-derived synthetic peptides in future studies of aGPCR function.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Péptidos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Sitios de Unión , Membrana Celular/metabolismo , Humanos , Modelos Moleculares , Péptidos/síntesis química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Relación Estructura-Actividad
18.
Mol Pharmacol ; 88(3): 617-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25956432

RESUMEN

The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 members in humans. aGPCRs are characterized by their enormous size and complex modular structures. While the physiologic importance of many aGPCRs has been clearly demonstrated in recent years, the underlying molecular functions have only recently begun to be elucidated. In this minireview, we present an overview of our current knowledge on aGPCR activation and signal transduction with a focus on the latest findings regarding the interplay between ligand binding, mechanical force, and the tethered agonistic Stachel sequence, as well as implications on translational approaches that may derive from understanding aGPCR pharmacology.


Asunto(s)
Adhesión Celular , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Animales , Humanos , Unión Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores de Péptidos/agonistas , Receptores de Péptidos/química , Transducción de Señal
19.
Biochem Biophys Res Commun ; 464(3): 743-7, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26188515

RESUMEN

The epididymis-specific adhesion G protein-coupled receptor (aGPCR) GPR64/ADGRG2 has been shown to be a key-player in the male reproductive system. As its disruption leads to infertility, GPR64 has drawn attention as potential target for male fertility control or improvement. Like the majority of aGPCRs GPR64 is an orphan receptor regarding its endogenous agonist and signal transduction. In this study we examined the G protein-coupling abilities of GPR64 and showed that it is activated through a tethered agonist sequence, which we have previously identified as the Stachel sequence. Synthetic peptides derived from the Stachel region can activate the receptor, opening for the first time the possibility to externally manipulate the receptor activity.


Asunto(s)
Péptidos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Epidídimo/metabolismo , Fertilidad/fisiología , Masculino , Ratones , Datos de Secuencia Molecular , Oligopéptidos/genética , Oligopéptidos/metabolismo , Péptidos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
20.
J Recept Signal Transduct Res ; 35(3): 220-3, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26366621

RESUMEN

The family of adhesion G protein-coupled receptors (aGPCRs) comprises 33 members in the human genome, which are subdivided into nine subclasses. Many aGPCRs undergo an autoproteolytic process via their GPCR Autoproteolysis-INducing (GAIN) domain during protein maturation to generate an N- and a C-terminal fragments, NTF and CTF, respectively. The NTF and CTF are non-covalently reassociated on the plasma membrane to form a single receptor unit. How aGPCRs are activated upon ligand binding remains one of the leading questions in the field of aGPCR research. Recent work from our labs and others shows that ligand binding can remove the NTF from the plasma membrane-bound CTF, exposing a tethered agonist which potently activates downstream signaling.


Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/fisiología , Animales , Moléculas de Adhesión Celular/ultraestructura , Simulación por Computador , Humanos , Proteínas de la Membrana/ultraestructura , Modelos Biológicos , Modelos Químicos , Receptores Acoplados a Proteínas G/ultraestructura , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA