Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Circ Res ; 133(3): 271-287, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37409456

RESUMEN

BACKGROUND: Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure. METHODS: We used the Tcf21 (transcription factor 21)MerCreMer mouse line for fibroblast-specific lineage tracing and p53 (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction. RESULTS: Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed p53 null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, Cdkn2a (cyclin-dependent kinase inhibitor 2a) expression and the p16Ink4a-retinoblastoma cell cycle control pathway is induced in p53 null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation. CONCLUSIONS: This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.


Asunto(s)
Cicatriz , Ventrículos Cardíacos , Ratones , Animales , Ventrículos Cardíacos/patología , Cicatriz/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fibrosis , Fibroblastos/metabolismo , Proliferación Celular , Miocardio/metabolismo
3.
Circulation ; 141(3): 217-233, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31801360

RESUMEN

BACKGROUND: Heart failure is a leading cause of death worldwide. Cyclic nucleotide phosphodiesterases (PDEs), through degradation of cyclic nucleotides, play critical roles in cardiovascular biology and disease. Our preliminary screening studies have revealed PDE10A upregulation in the diseased heart. However, the roles of PDE10A in cardiovascular biology and disease are largely uncharacterized. The current study is aimed to investigate the regulation and function of PDE10A in cardiac cells and in the progression of cardiac remodeling and dysfunction. METHODS: We used isolated adult mouse cardiac myocytes and fibroblasts, as well as preclinical mouse models of hypertrophy and heart failure. The PDE10A selective inhibitor TP-10, and global PDE10A knock out mice were used. RESULTS: We found that PDE10A expression remains relatively low in normal and exercised heart tissues. However, PDE10A is significantly upregulated in mouse and human failing hearts. In vitro, PDE10A deficiency or inhibiting PDE10A with selective inhibitor TP-10, attenuated cardiac myocyte pathological hypertrophy induced by Angiotensin II, phenylephrine, and isoproterenol, but did not affect cardiac myocyte physiological hypertrophy induced by IGF-1 (insulin-like growth factor 1). TP-10 also reduced TGF-ß (transforming growth factor-ß)-stimulated cardiac fibroblast activation, proliferation, migration and extracellular matrix synthesis. TP-10 treatment elevated both cAMP and cGMP levels in cardiac myocytes and cardiac fibroblasts, consistent with PDE10A as a cAMP/cGMP dual-specific PDE. In vivo, global PDE10A deficiency significantly attenuated myocardial hypertrophy, cardiac fibrosis, and dysfunction induced by chronic pressure overload via transverse aorta constriction or chronic neurohormonal stimulation via Angiotensin II infusion. Importantly, we demonstrated that the pharmacological effect of TP-10 is specifically through PDE10A inhibition. In addition, TP-10 is able to reverse pre-established cardiac hypertrophy and dysfunction. RNA-Sequencing and bioinformatics analysis further identified a PDE10A-regualted transcriptome involved in cardiac hypertrophy, fibrosis, and cardiomyopathy. CONCLUSIONS: Taken together, our study elucidates a novel role for PDE10A in the regulation of pathological cardiac remodeling and development of heart failure. Given that PDE10A has been proven to be a safe drug target, PDE10A inhibition may represent a novel therapeutic strategy for preventing and treating cardiac diseases associated with cardiac remodeling.


Asunto(s)
Cardiomegalia/enzimología , Fibroblastos/enzimología , Miocitos Cardíacos/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Remodelación Ventricular , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Modelos Animales de Enfermedad , Fibroblastos/patología , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Hidrolasas Diéster Fosfóricas/genética , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 115(15): E3436-E3445, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581288

RESUMEN

Heart disease is associated with the accumulation of resident cardiac fibroblasts (CFs) that secrete extracellular matrix (ECM), leading to the development of pathological fibrosis and heart failure. However, the mechanisms underlying resident CF proliferation remain poorly defined. Here, we report that small proline-rich protein 2b (Sprr2b) is among the most up-regulated genes in CFs during heart disease. We demonstrate that SPRR2B is a regulatory subunit of the USP7/MDM2-containing ubiquitination complex. SPRR2B stimulates the accumulation of MDM2 and the degradation of p53, thus facilitating the proliferation of pathological CFs. Furthermore, SPRR2B phosphorylation by nonreceptor tyrosine kinases in response to TGF-ß1 signaling and free-radical production potentiates SPRR2B activity and cell cycle progression. Knockdown of the Sprr2b gene or inhibition of SPRR2B phosphorylation attenuates USP7/MDM2 binding and p53 degradation, leading to CF cell cycle arrest. Importantly, SPRR2B expression is elevated in cardiac tissue from human heart failure patients and correlates with the proliferative state of patient-derived CFs in a process that is reversed by insulin growth factor-1 signaling. These data establish SPRR2B as a unique component of the USP7/MDM2 ubiquitination complex that drives p53 degradation, CF accumulation, and the development of pathological cardiac fibrosis.


Asunto(s)
Proliferación Celular , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Anciano , Animales , Proteínas Ricas en Prolina del Estrato Córneo/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocardio/metabolismo , Proteolisis , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
J Mol Cell Cardiol ; 132: 1-12, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31042488

RESUMEN

Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFß), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.


Asunto(s)
Fibroblastos/metabolismo , Regulación de la Expresión Génica , Insuficiencia Cardíaca/prevención & control , Infarto del Miocardio/prevención & control , Miocitos Cardíacos/metabolismo , Transcripción Genética , Animales , Fibroblastos/citología , Insuficiencia Cardíaca/metabolismo , Humanos , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal
7.
J Mol Cell Cardiol ; 129: 92-104, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771308

RESUMEN

Serum response factor (SRF) and the SRF co-activators myocardin-related transcription factors (MRTFs) are essential for epicardium-derived progenitor cell (EPDC)-mobilization during heart development; however, the impact of developmental EPDC deficiencies on adult cardiac physiology has not been evaluated. Here, we utilize the Wilms Tumor-1 (Wt1)-Cre to delete Mrtfs or Srf in the epicardium, which reduced the number of EPDCs in the adult cardiac interstitium. Deficiencies in Wt1-lineage EPDCs prevented the development of cardiac fibrosis and diastolic dysfunction in aged mice. Mice lacking MRTF or SRF in EPDCs also displayed preservation of cardiac function following myocardial infarction partially due to the depletion of Wt1 lineage-derived cells in the infarct. Interestingly, depletion of Wt1-lineage EPDCs allows for the population of the infarct with a Wt1-negative cell lineage with a reduced fibrotic profile. Taken together, our study conclusively demonstrates the contribution of EPDCs to both ischemic cardiac remodeling and the development of diastolic dysfunction in old age, and reveals the existence of an alternative Wt1-negative source of resident fibroblasts that can populate the infarct.


Asunto(s)
Envejecimiento/patología , Fibroblastos/patología , Isquemia Miocárdica/patología , Pericardio/patología , Animales , Linaje de la Célula , Diástole , Fibrosis , Corazón/fisiopatología , Ratones Noqueados , Isquemia Miocárdica/fisiopatología , Factor de Respuesta Sérica/metabolismo , Células Madre/metabolismo , Transactivadores/metabolismo , Remodelación Ventricular , Proteínas WT1/metabolismo
8.
J Mol Cell Cardiol ; 91: 52-60, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26721596

RESUMEN

Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor ß (TGFß)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling".


Asunto(s)
Regulación de la Expresión Génica , Miocardio/metabolismo , Miofibroblastos/metabolismo , Transcripción Genética , Animales , Calcineurina/genética , Calcineurina/metabolismo , Diferenciación Celular , Fibrosis , Humanos , Miocardio/citología , Miofibroblastos/citología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
9.
Cell Mol Life Sci ; 71(11): 1977-99, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24071897

RESUMEN

Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies.


Asunto(s)
Arterias/patología , Enfermedades Cardiovasculares/patología , Endotelio Vascular/patología , Morfogénesis/genética , Músculo Liso Vascular/patología , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Diferenciación Celular , Linaje de la Célula/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Músculo Liso Vascular/crecimiento & desarrollo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Neovascularización Patológica , Neovascularización Fisiológica
10.
Dev Dyn ; 240(3): 577-88, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21337463

RESUMEN

Deletion of the Mesd gene region blocks gastrulation and mesoderm differentiation in mice. MESD is a chaperone for the Wnt co-receptors: low-density lipoprotein receptor-related protein (LRP) 5 and 6 (LRP5/6). We hypothesized that loss of Wnt signaling is responsible for the polarity defects observed in Mesd-deficient embryos. However, because the Mesd-deficient embryo is considerably smaller than Lrp5/6 or Wnt3 mutants, we predicted that MESD function extends more broadly to the LRP family of receptors. Consistent with this prediction, we demonstrated that MESD function in vitro was essential for maturation of the ß-propeller/EGF domain common to LRPs. To begin to understand the role of MESD in LRP maturation in vivo, we generated a targeted Mesd knockout and verified that loss of Mesd blocks WNT signaling in vivo. Mesd mutants continue to express the pluripotency markers Oct4, Nanog, and Sox2, suggesting that Wnt signaling is essential for differentiation of the epiblast. Moreover, we demonstrated that MESD was essential for the apical localization of the related LRP2 (Megalin/MEG) in the visceral endoderm, resulting in impaired endocytic function. Combined, our results provide evidence that MESD functions as a general LRP chaperone and suggest that the Mesd phenotype results from both signaling and endocytic defects resulting from misfolding of multiple LRP receptors.


Asunto(s)
Endodermo/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Chaperonas Moleculares/metabolismo , Vísceras/embriología , Animales , Western Blotting , Células COS , Chlorocebus aethiops , Endodermo/citología , Genotipo , Inmunohistoquímica , Hibridación in Situ , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Chaperonas Moleculares/genética , Reacción en Cadena de la Polimerasa
11.
Circ Heart Fail ; 12(4): e005565, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998392

RESUMEN

Background Heart failure (HF) is invariably accompanied by development of cardiac fibrosis, a form of scarring that increases muscular tissue rigidity and decreases cardiac contractility. Cardiac fibrosis arises from a pathological attempt to repair tissue damaged during maladaptive remodeling. Treatment options to block or reverse fibrosis have proven elusive. Neprilysin is an endopeptidase that degrades vasoactive peptides, including atrial natriuretic peptide. Thus, neprilysin inhibition reduces hypertension, ultimately limiting maladaptive cardiac remodeling. LCZ696, which consists of an angiotensin receptor blocker (valsartan [VAL]) and a neprilysin inhibitor (sacubitril [SAC]), was shown to be well tolerated and significantly reduced the risk of death and hospitalization in HF patients with reduced ejection fraction. We hypothesized that SAC/VAL directly inhibits fibroblast activation and development of pathological fibrosis. Methods and Results We used a mouse model of left ventricle pressure overload coupled to in vitro studies in primary mouse and human cardiac fibroblasts (CFs) to study the impact of SAC/VAL on CF activation and cardiac fibrosis. SAC/VAL significantly ameliorated pressure overload-induced cardiac fibrosis by blocking CF activation and proliferation, leading to functional improvement. Mechanistically, the beneficial impact of SAC/VAL at least partially stemmed from restoration of PKG (protein kinase G) signaling in HF patient-derived CF, which inhibited Rho activation associated with myofibroblast transition. Conclusions This study reveals that SAC/VAL acts directly on CF to prevent maladaptive cardiac fibrosis and dysfunction during pressure overload-induced hypertrophy and suggests that SAC/VAL should be evaluated as a direct antifibrotic therapeutic for conditions such as HF with preserved ejection fraction.


Asunto(s)
Aminobutiratos/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Ventrículos Cardíacos/efectos de los fármacos , Tetrazoles/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Animales , Compuestos de Bifenilo , Combinación de Medicamentos , Fibroblastos/metabolismo , Fibrosis/tratamiento farmacológico , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Masculino , Ratones Endogámicos C57BL , Neprilisina/antagonistas & inhibidores , Valsartán
12.
JCI Insight ; 4(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30626739

RESUMEN

Exercise and heart disease both induce cardiac remodeling, but only disease causes fibrosis and compromises heart function. The cardioprotective benefits of exercise have been attributed to changes in cardiomyocyte physiology, but the impact of exercise on cardiac fibroblasts (CFs) is unknown. Here, RNA-sequencing reveals rapid divergence of CF transcriptional programs during exercise and disease. Among the differentially expressed programs, NRF2-dependent antioxidant genes - including metallothioneins (Mt1 and Mt2) - are induced in CFs during exercise and suppressed by TGF-ß/p38 signaling in disease. In vivo, mice lacking Mt1/2 exhibit signs of cardiac dysfunction in exercise, including cardiac fibrosis, vascular rarefaction, and functional decline. Mechanistically, exogenous MTs derived from fibroblasts are taken up by cultured cardiomyocytes, reducing oxidative damage-dependent cell death. Importantly, suppression of MT expression is conserved in human heart failure. Taken together, this study defines the acute transcriptional response of CFs to exercise and disease and reveals a cardioprotective mechanism that is lost in disease.

13.
Cell Rep ; 6(5): 809-17, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24582963

RESUMEN

Excess smooth muscle accumulation is a key component of many vascular disorders, including atherosclerosis, restenosis, and pulmonary artery hypertension, but the underlying cell biological processes are not well defined. In pulmonary artery hypertension, reduced pulmonary artery compliance is a strong independent predictor of mortality, and pathological distal arteriole muscularization contributes to this reduced compliance. We recently demonstrated that embryonic pulmonary artery wall morphogenesis consists of discrete developmentally regulated steps. In contrast, poor understanding of distal arteriole muscularization in pulmonary artery hypertension severely limits existing therapies that aim to dilate the pulmonary vasculature but have modest clinical benefit and do not prevent hypermuscularization. Here, we show that most pathological distal arteriole smooth muscle cells, but not alveolar myofibroblasts, derive from pre-existing smooth muscle. Furthermore, the program of distal arteriole muscularization encompasses smooth muscle cell dedifferentiation, distal migration, proliferation, and then redifferentiation, thereby recapitulating many facets of arterial wall development.


Asunto(s)
Arterias/patología , Hipertensión Pulmonar/patología , Miocitos del Músculo Liso/patología , Miofibroblastos/patología , Animales , Arterias/metabolismo , Procesos de Crecimiento Celular/fisiología , Hipoxia de la Célula/fisiología , Humanos , Hipertensión Pulmonar/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Miofibroblastos/metabolismo
14.
PLoS One ; 8(10): e75782, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124512

RESUMEN

The Low-density lipoprotein receptor-Related Protein (LRP) family members are essential for diverse processes ranging from the regulation of gastrulation to the modulation of lipid homeostasis. Receptors in this family bind and internalize a diverse array of ligands in the extracellular matrix (ECM). As a consequence, LRPs regulate a wide variety of cellular functions including, but not limited to lipid metabolism, membrane composition, cell motility, and cell signaling. Not surprisingly, mutations in single human LRPs are associated with defects in cholesterol metabolism and development of atherosclerosis, abnormalities in bone density, or aberrant eye vasculature, and may be a contributing factor in development of Alzheimer's disease. Often, members of this diverse family of receptors perform overlapping roles in the same tissues, complicating the analysis of their function through conventional targeted mutagenesis. Here, we describe development of a mouse Mesd (Mesoderm Development) conditional knockout allele, and demonstrate that ubiquitous deletion of Mesd using Cre-recombinase blocks gastrulation, as observed in the traditional knockout and albino-deletion phenotypes. This conditional allele will serve as an excellent tool for future characterization of the cumulative contribution of LRP members in defined tissues.


Asunto(s)
Integrasas/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de LDL/metabolismo , Alelos , Animales , Genotipo , Integrasas/genética , Hígado/metabolismo , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Receptores de LDL/genética
15.
Nat Med ; 19(1): 74-82, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23263626

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with obliteration of pulmonary arterioles and formation of plexiform lesions composed of hyperproliferative endothelial and vascular smooth-muscle cells. Here we describe a microRNA (miRNA)-dependent association between apelin (APLN) and fibroblast growth factor 2 (FGF2) signaling in pulmonary artery endothelial cells (PAECs). APLN deficiency in these cells led to increased expression of FGF2 and its receptor FGFR1 as a consequence of decreased expression of miR-424 and miR-503, which directly target FGF2 and FGFR1. miR-424 and miR-503 were downregulated in PAH, exerted antiproliferative effects in PAECs and inhibited the capacity of PAEC-conditioned medium to induce the proliferation of pulmonary artery smooth-muscle cells. Reconstitution of miR-424 and miR-503 in vivo ameliorated pulmonary hypertension in experimental models. These studies identify an APLN-dependent miRNA-FGF signaling axis needed for the maintenance of pulmonary vascular homeostasis.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hipertensión Pulmonar/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , MicroARNs/metabolismo , Animales , Apelina , Movimiento Celular , Proliferación Celular , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Regulación hacia Abajo , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/biosíntesis , Transducción de Señal , Enfermedades Vasculares/metabolismo
16.
Dev Cell ; 23(3): 482-93, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22975322

RESUMEN

Some of the most serious diseases involve altered size and structure of the arterial wall. Elucidating how arterial walls are built could aid understanding of these diseases, but little is known about how concentric layers of muscle cells and the outer adventitial layer are assembled and patterned around endothelial tubes. Using histochemical, clonal, and genetic analysis in mice, here we show that the pulmonary artery wall is constructed radially, from the inside out, by two separate but coordinated processes. One is sequential induction of successive cell layers from surrounding mesenchyme. The other is controlled invasion of outer layers by inner layer cells through developmentally regulated cell reorientation and radial migration. We propose that a radial signal gradient controls these processes and provide evidence that PDGF-B and at least one other signal contribute. Modulation of such radial signaling pathways may underlie vessel-specific differences and pathological changes in arterial wall size and structure.


Asunto(s)
Arteria Pulmonar/fisiología , Arteria Radial/fisiología , Transducción de Señal , Animales , División Celular , Pulmón/citología , Mesodermo/citología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-sis/metabolismo , Arteria Pulmonar/crecimiento & desarrollo , Arteria Pulmonar/metabolismo , Arteria Radial/metabolismo
17.
Structure ; 19(3): 337-48, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21397185

RESUMEN

Mesoderm development (MESD) is a 224 amino acid mouse protein that acts as a molecular chaperone for the low-density lipoprotein receptor (LDLR) family. Here, we provide evidence that the region 45-184 of MESD is essential and sufficient for this function and suggest a model for its mode of action. NMR studies reveal a ß-α-ß-ß-α-ß core domain with an α-helical N-terminal extension that interacts with the ß sheet in a dynamic manner. As a result, the structural ensemble contains open (active) and closed (inactive) forms, allowing for regulation of chaperone activity through substrate binding. The mutant W61R, which is lethal in Drosophila, adopts only the open state. The receptor motif recognized by MESD was identified by in vitro-binding studies. Furthermore, in vivo functional evidence for the relevance of the identified contact sites in MESD is provided.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Drosophila melanogaster , Expresión Génica , Humanos , Proteínas Relacionadas con Receptor de LDL/química , Proteínas Relacionadas con Receptor de LDL/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Ratones , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Mutación , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad Cuantitativa , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA