Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 117(2): 599-615, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37902786

RESUMEN

Chloroplasts are essential organelles in plants that contain chlorophylls and facilitate photosynthesis for growth and development. As photosynthetic efficiency significantly impacts crop productivity, understanding the regulatory mechanisms of chloroplast development has been crucial in increasing grain and biomass production. This study demonstrates the involvement of OsGATA16, an ortholog of Arabidopsis GATA, NITRATE INDUCIBLE, CARBON-METABOLISM INVOLVED (GNC), and GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR 1 (GNL/CGA1), in chlorophyll biosynthesis and chloroplast development in rice (Oryza sativa). The osgata16-1 knockdown mutants produced pale-green leaves, while OsGATA16-overexpressed plants (OsGATA16-OE1) generated dark-green leaves, compared to their parental japonica rice. Reverse transcription and quantitative PCR analysis revealed downregulation of genes related to chloroplast division, chlorophyll biosynthesis, and photosynthesis in the leaves of osgata16-1 and upregulation in those of OsGATA16-OE1. Additionally, in vivo binding assays showed that OsGATA16 directly binds to the promoter regions of OsHEMA, OsCHLH, OsPORA, OsPORB, and OsFtsZ, and upregulates their expression. These findings indicate that OsGATA16 serves as a positive regulator controlling chlorophyll biosynthesis and chloroplast development in rice.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Oryza/metabolismo , Cloroplastos/metabolismo , Fotosíntesis/genética , Clorofila/metabolismo , Arabidopsis/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
Plant Physiol ; 188(4): 1900-1916, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34718775

RESUMEN

During crop cultivation, water-deficit conditions retard growth, thus reducing crop productivity. Therefore, uncovering the mechanisms behind drought tolerance is a critical task for crop improvement. Here, we show that the rice (Oryza sativa) WRKY transcription factor OsWRKY5 negatively regulates drought tolerance. We determined that OsWRKY5 was mainly expressed in developing leaves at the seedling and heading stages, and that its expression was reduced by drought stress and by treatment with NaCl, mannitol, and abscisic acid (ABA). Notably, the genome-edited loss-of-function alleles oswrky5-2 and oswrky5-3 conferred enhanced drought tolerance, measured as plant growth under water-deficit conditions. Conversely, the overexpression of OsWRKY5 in the activation-tagged line oswrky5-D resulted in higher susceptibility under the same conditions. The loss of OsWRKY5 activity increased sensitivity to ABA, thus promoting ABA-dependent stomatal closure. Transcriptome deep sequencing and reverse transcription quantitative polymerase chain reaction analyses demonstrated that the expression of abiotic stress-related genes including rice MYB2 (OsMYB2) was upregulated in oswrky5 knockout mutants and downregulated in oswrky5-D mutants. Moreover, dual-luciferase, yeast one-hybrid, and chromatin immunoprecipitation assays showed that OsWRKY5 directly binds to the W-box sequences in the promoter region of OsMYB2 and represses OsMYB2 expression, thus downregulating genes downstream of OsMYB2 in the ABA signaling pathways. Our results demonstrate that OsWRKY5 functions as a negative regulator of ABA-induced drought stress tolerance, strongly suggesting that inactivation of OsWRKY5 or manipulation of key OsWRKY5 targets could be useful to improve drought tolerance in rice cultivars.


Asunto(s)
Ácido Abscísico , Oryza , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Cell Environ ; 46(5): 1504-1520, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36683564

RESUMEN

Drought tolerance is important for grain crops, including rice (Oryza sativa); for example, rice cultivated under intermittent irrigation produces less methane gas compared to rice grown in anaerobic paddy field conditions, but these plants require greater drought tolerance. Moreover, the roles of rice circadian-clock genes in drought tolerance remain largely unknown. Here, we show that the mutation of LOV KELCH REPEAT PROTEIN 2 (OsLKP2) enhanced drought tolerance by increasing cuticular wax biosynthesis. Among ZEITLUPE family genes, OsLKP2 expression specifically increased under dehydration stress. OsLKP2 knockdown (oslkp2-1) and knockout (oslkp2-2) mutants exhibited enhanced drought tolerance. Cuticular waxes inhibit non-stomatal water loss. Under drought conditions, total wax loads on the leaf surface increased by approximately 10% in oslkp2-1 and oslkp2-2 compared to the wild type, and the transcript levels of cuticular wax biosynthesis genes were upregulated in the oslkp2 mutants. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that OsLKP2 interacts with GIGANTEA (OsGI) in the nucleus. The osgi mutants also showed enhanced tolerance to drought stress, with a high density of wax crystals on their leaf surface. These results demonstrate that the OsLKP2-OsGI interaction negatively regulates wax accumulation on leaf surfaces, thereby decreasing rice resilience to drought stress.


Asunto(s)
Sequías , Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencia Kelch , Ceras/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo
4.
Plant Cell Environ ; 45(8): 2446-2459, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35610056

RESUMEN

The vegetative-to-reproductive transition requires the complex, coordinated activities of many transcriptional regulators. Rice (Oryza sativa), a facultative short-day (SD) plant, flowers early under SD (≤10 h light/day) and late under long-day (LD; ≥14 h light/day) conditions. Here, we demonstrate that rice LATE FLOWERING SEMI-DWARF (LFS) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor that promotes flowering under non-inductive LD conditions. LFS showed diurnal expression peaking at dawn, and transcript levels increased gradually until heading. Mutation of LFS delayed flowering under LD but not SD conditions. Expression of the LD-specific floral repressor gene LEAFY COTYLEDON2 AND FUSCA3-LIKE 1 (OsLFL1) was upregulated in lfs knockout mutants, and LFS bound directly to the GCC-rich motif in the OsLFL1 promoter, repressing OsLFL1 expression. This suggests that increased LFS activity during vegetative growth gradually attenuates OsLFL1 activity. Subsequent increases in Early heading date 1, Heading date 3a, and RICE FLOWERING LOCUS T 1 expression result in flowering under non-inductive LD conditions. LFS did not affect the expression of other OsLFL1 regulators, including OsMADS50, OsMADS56, VERNALIZATION INSENSITIVE3-LIKE 2, and GERMINATION DEFECTIVE 1, or interact with them. Our results demonstrate the novel roles of LFS in inducing flowering under natural LD conditions.


Asunto(s)
Oryza , Factores de Transcripción , Etilenos/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
BMB Rep ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044456

RESUMEN

The vascular system in plants facilitates long-distance transportation of water and nutrients through the xylem and phloem, while also providing mechanical support for vertical growth. Although many genes that regulate vascular development in rice have been identified, the mechanism by which epigenetic regulators control vascular development remains unclear. This study found that Rolled Fine Striped (RFS), a Chromodomain Helicase DNA-binding 3 (CHD3)/Mi-2 subfamily protein, regulates vascular development in rice by affecting the initiation and development of primordia. The rfs mutant was found to affect auxin-related genes, as revealed by RNA sequencing and reverse transcription-quantitative PCR analysis. The transcript levels of OsPIN1 and NAL1 genes were downregulated in rfs mutant, compared to the wild-type plant. The chromatin immunoprecipitation assays showed lower levels of H3K4me3 in the OsPIN1a and NAL1 genes in rfs mutant. Furthermore, exogenous auxin treatment partially rescued the reduced adventitious root vascular development in rfs mutant. Subsequently, exogenous treatments with auxin or an auxin-transport inhibitor revealed that the expression of OsPIN1a and NAL1 is mainly affected by auxin. These results provide strong evidence that RFS plays an important role in vascular development and root formation through the auxin signaling pathway in rice.

6.
Front Plant Sci ; 11: 1096, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765572

RESUMEN

Leaf senescence is the final stage of leaf development and an important step that relocates nutrients for grain filling in cereal crops. Senescence occurs in an age-dependent manner and under unfavorable environmental conditions such as deep shade, water deficit, and high salinity stresses. Although many transcription factors that modulate leaf senescence have been identified, the mechanisms that regulate leaf senescence in response to environmental conditions remain elusive. Here, we show that rice (Oryza sativa) ETHYLENE RESPONSE FACTOR 101 (OsERF101) promotes the onset and progression of leaf senescence. OsERF101 encodes a predicted transcription factor and OsERF101 transcript levels rapidly increased in rice leaves during dark-induced senescence (DIS), indicating that OsERF101 is a senescence-associated transcription factor. Compared with wild type, the oserf101 T-DNA knockout mutant showed delayed leaf yellowing and higher chlorophyll contents during DIS and natural senescence. Consistent with its delayed-yellowing phenotype, the oserf101 mutant exhibited downregulation of genes involved in chlorophyll degradation, including rice NAM, ATAF1/2, and CUC2 (OsNAP), STAY-GREEN (SGR), NON-YELLOW COLORING 1 (NYC1), and NYC3 during DIS. After methyl jasmonate treatment to induce rapid leaf de-greening, the oserf101 leaves retained more chlorophyll compared with wild type, indicating that OsERF101 is involved in promoting jasmonic acid (JA)-induced leaf senescence. Consistent with the involvement of JA, the expression of the JA signaling genes OsMYC2/JA INSENSITIVE 1 (OsJAI1) and CORONATINE INSENSITIVE 1a (OsCOI1a), was downregulated in the oserf101 leaves during DIS. Transient transactivation and chromatin immunoprecipitation assays revealed that OsERF101 directly binds to the promoter regions of OsNAP and OsMYC2, which activate genes involved in chlorophyll degradation and JA signaling-mediated leaf senescence. These results demonstrate that OsERF101 promotes the onset and progression of leaf senescence through a JA-mediated signaling pathway.

7.
Front Plant Sci ; 9: 1925, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30666263

RESUMEN

Lesion mimic mutants (LMMs) are usually controlled by single recessive mutations that cause the formation of necrotic lesions without pathogen invasion. These genetic defects are useful to reveal the regulatory mechanisms of defense-related programmed cell death in plants. Molecular evidence has been suggested that some of LMMs are closely associated with the regulation of leaf senescence in rice (Oryza sativa). Here, we characterized the mutation underlying spotted leaf4 (spl4), which results in lesion formation and also affects leaf senescence in rice. Map-based cloning revealed that the γ ray-induced spl4-1 mutant has a single base substitution in the splicing site of the SPL4 locus, resulting in a 13-bp deletion within the encoded microtubule-interacting-and-transport (MIT) spastin protein containing an AAA-type ATPase domain. The T-DNA insertion spl4-2 mutant exhibited spontaneous lesions similar to those of the spl4-1 mutant, confirming that SPL4 is responsible for the LMM phenotype. In addition, both spl4 mutants exhibited delayed leaf yellowing during dark-induced or natural senescence. Western blot analysis of spl4 mutant leaves suggested possible roles for SPL4 in the degradation of photosynthetic proteins. Punctate signals of SPL4-fused fluorescent proteins were detected in the cytoplasm, similar to the cellular localization of animal spastin. Based on these findings, we propose that SPL4 is a plant spastin that is involved in multiple aspects of leaf development, including senescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA