Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biochem J ; 471(3): 381-9, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26330614

RESUMEN

Adiponectin, a hormone secreted from adipocytes and released at a high rate into the circulation, plays a pivotal role in maintaining insulin sensitivity at the whole-body level. Despite the importance of this adipokine in metabolic homoeostasis, the mechanism of its secretion from adipocytes remains largely unclear. In the present study, we investigated the subcellular localization of adiponectin, and its secretion regulation in 3T3-L1-differentiated adipocytes, using biochemical methods and fluorescence microscopic imaging. We show that adiponectin is localized in vesicular compartments with no apparent overlap with the Golgi apparatus or endosomes. Moreover, adiponectin-containing vesicles are enriched in two distinct pools: one at the plasma membrane (PM) and the other co-fractionating with endoplasmic reticulum membranes. When viewed under a total internal refection fluorescence microscope, a subset of adiponectin-Venus vesicles is readily observed in proximity to PMs, and could be released in response to insulin. Insulin-stimulated adiponectin release appears to be from a pre-existing pool of vesicles, and is not dependent on new protein synthesis, because adiponectin mRNA levels remain unchanged over a 6-h period of insulin treatment, and inhibition of protein synthesis has no effect on adiponectin release. Disruption of insulin signalling by inhibitors of phosphoinositide 3-kinase and protein kinase B (Akt)-1/2 abrogates the stimulated release of adiponectin. Taken together, our results show that adiponectin is stored in a unique vesicular compartment, and released through a regulated exocytosis pathway that is dependent on insulin signalling.


Asunto(s)
Adiponectina/genética , Diferenciación Celular/genética , Exocitosis/genética , Insulina/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Adiponectina/metabolismo , Animales , Membrana Celular/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Ratones , Fosfatidilinositol 3-Quinasas , Transducción de Señal
2.
Biochem J ; 458(3): 491-8, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24405299

RESUMEN

Numerous studies have focused on the regulation of leptin signalling and the functions of leptin in energy homoeostasis; however, little is known about how leptin secretion is regulated. In the present study we studied leptin storage and secretion regulation in 3T3-L1 and primary adipocytes. Leptin is stored in membrane-bound vesicles that are localized predominantly in the ER (endoplasmic reticulum) and close to the plasma membrane of both 3T3-L1 and primary adipocytes. Insulin increases leptin secretion as early as 15 min without affecting the leptin mRNA level. Interestingly, treatment with the protein synthesis inhibitor cycloheximide and the ER-Golgi trafficking blocker Brefeldin A inhibit both basal and ISLS (insulin-stimulated leptin secretion), suggesting that insulin stimulates leptin secretion by up-regulating leptin synthesis and that leptin-containing vesicles go through the ER-Golgi route. The PI3K (phosphoinositide 3-kinase)/Akt, but not MAPK (mitogen-activated protein kinase), pathway is involved in ISLS in vitro and in vivo. Although Ca2+ triggers synaptic vesicle and secretory granule exocytosis, Ca2+ influx alone is not sufficient to induce leptin secretion. Remarkably, Ca2+ is required for ISLS possibly due to its involvement in insulin-stimulated Akt phosphorylation. We conclude that insulin stimulates leptin release through the PI3K/Akt pathway and that Ca2+ is required for robust Akt phosphorylation and leptin secretion.


Asunto(s)
Calcio/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células 3T3-L1 , Adipocitos Blancos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Activación Enzimática , Aparato de Golgi/metabolismo , Insulina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transporte de Proteínas , Vesículas Secretoras/metabolismo , Transducción de Señal
3.
Biochem J ; 464(2): 179-92, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25220164

RESUMEN

Extensive actin cytoskeleton remodelling occurs during adipocyte development. We have previously shown that disruption of stress fibres by the actin-severing protein cofilin is a requisite step in adipogenesis. However, it remains unclear whether actin nucleation and assembly into the cortical structure are essential for adipocyte development. In the present study we investigated the role of cortical actin assembly and of actin nucleation by the actin-related protein 2/3 (Arp2/3) complex in adipogenesis. Cortical actin structure formation started with accumulation of filamentous actin (F-actin) patches near the plasma membrane during adipogenesis. Depletion of Arp2/3 by knockdown of its subunits Arp3 or ARPC3 strongly impaired adipocyte differentiation, although adipogenesis-initiating factors were unaffected. Moreover, the assembly of F-actin-rich structures at the plasma membrane was suppressed and the cortical actin structure poorly developed after adipogenic induction in Arp2/3-deficient cells. Finally, we provide evidence that the cortical actin cytoskeleton is essential for efficient glucose transporter 4 (GLUT4) vesicle exocytosis and insulin signal transduction. These results show that the Arp2/3 complex is an essential regulator of adipocyte development through control of the formation of cortical actin structures, which may facilitate nutrient uptake and signalling events.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Adipogénesis , Citoesqueleto de Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/química , Adipocitos/metabolismo , Animales , Diferenciación Celular/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Ratones , Transducción de Señal
4.
Science ; 377(6612): 1290-1298, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36007018

RESUMEN

Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.


Asunto(s)
Colesterol , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptores Acoplados a Proteínas G , Colesterol/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 653557, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959097

RESUMEN

Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle contraction results in AMPK activation, which promotes GLUT4 translocation and PM insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4 translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4 translocation. We performed biochemical, molecular biology and fluorescent microscopy imaging experiments using gain- and loss-of-function mutants of tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4 translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of glucose homeostasis.


Asunto(s)
Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 4/sangre , Mioblastos/metabolismo , Tropomodulina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Transporte Biológico , Glucosa/metabolismo , Glutatión/metabolismo , Humanos , Insulina/metabolismo , Lentivirus/metabolismo , Espectrometría de Masas , Ratones , Músculo Esquelético/metabolismo , Fosforilación , Transporte de Proteínas , Transducción de Señal
6.
Dev Cell ; 56(3): 260-276.e7, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33308480

RESUMEN

Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.


Asunto(s)
Colesterol/metabolismo , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Orgánulos/metabolismo , Transducción de Señal , Adulto , Animales , Células Cultivadas , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Modelos Biológicos , Neuronas/metabolismo , Proteína Niemann-Pick C1 , Proteolisis
7.
Science ; 366(6468): 971-977, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31672913

RESUMEN

The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.


Asunto(s)
Lisosomas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Lisosomas/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Transducción de Señal
8.
Nat Cell Biol ; 21(10): 1206-1218, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548609

RESUMEN

Cholesterol activates the master growth regulator, mTORC1 kinase, by promoting its recruitment to the surface of lysosomes by the Rag guanosine triphosphatases (GTPases). The mechanisms that regulate lysosomal cholesterol content to enable mTORC1 signalling are unknown. Here, we show that oxysterol binding protein (OSBP) and its anchors at the endoplasmic reticulum (ER), VAPA and VAPB, deliver cholesterol across ER-lysosome contacts to activate mTORC1. In cells lacking OSBP, but not other VAP-interacting cholesterol carriers, the recruitment of mTORC1 by the Rag GTPases is inhibited owing to impaired transport of cholesterol to lysosomes. By contrast, OSBP-mediated cholesterol trafficking drives constitutive mTORC1 activation in a disease model caused by the loss of the lysosomal cholesterol transporter, Niemann-Pick C1 (NPC1). Chemical and genetic inactivation of OSBP suppresses aberrant mTORC1 signalling and restores autophagic function in cellular models of Niemann-Pick type C (NPC). Thus, ER-lysosome contacts are signalling hubs that enable cholesterol sensing by mTORC1, and targeting the sterol-transfer activity of these signalling hubs could be beneficial in patients with NPC.


Asunto(s)
Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Enfermedades de Niemann-Pick/metabolismo , Receptores de Esteroides/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Proteína Niemann-Pick C1 , Receptores de Esteroides/genética , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Cancer Discov ; 7(11): 1266-1283, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28899863

RESUMEN

Lysosomes serve dual roles in cancer metabolism, executing catabolic programs (i.e., autophagy and macropinocytosis) while promoting mTORC1-dependent anabolism. Antimalarial compounds such as chloroquine or quinacrine have been used as lysosomal inhibitors, but fail to inhibit mTOR signaling. Further, the molecular target of these agents has not been identified. We report a screen of novel dimeric antimalarials that identifies dimeric quinacrines (DQ) as potent anticancer compounds, which concurrently inhibit mTOR and autophagy. Central nitrogen methylation of the DQ linker enhances lysosomal localization and potency. An in situ photoaffinity pulldown identified palmitoyl-protein thioesterase 1 (PPT1) as the molecular target of DQ661. PPT1 inhibition concurrently impairs mTOR and lysosomal catabolism through the rapid accumulation of palmitoylated proteins. DQ661 inhibits the in vivo tumor growth of melanoma, pancreatic cancer, and colorectal cancer mouse models and can be safely combined with chemotherapy. Thus, lysosome-directed PPT1 inhibitors represent a new approach to concurrently targeting mTORC1 and lysosomal catabolism in cancer.Significance: This study identifies chemical features of dimeric compounds that increase their lysosomal specificity, and a new molecular target for these compounds, reclassifying these compounds as targeted therapies. Targeting PPT1 blocks mTOR signaling in a manner distinct from catalytic inhibitors, while concurrently inhibiting autophagy, thereby providing a new strategy for cancer therapy. Cancer Discov; 7(11); 1266-83. ©2017 AACR.See related commentary by Towers and Thorburn, p. 1218This article is highlighted in the In This Issue feature, p. 1201.


Asunto(s)
Lisosomas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Proteínas de la Membrana/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Tioléster Hidrolasas/antagonistas & inhibidores , Animales , Antimaláricos/administración & dosificación , Antineoplásicos/administración & dosificación , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/administración & dosificación , Humanos , Lisosomas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Melanoma/genética , Melanoma/patología , Proteínas de la Membrana/genética , Ratones , Terapia Molecular Dirigida , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tioléster Hidrolasas/genética
10.
J Cell Biol ; 214(6): 653-64, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27621362

RESUMEN

Lysosomes are membrane-bound organelles found in every eukaryotic cell. They are widely known as terminal catabolic stations that rid cells of waste products and scavenge metabolic building blocks that sustain essential biosynthetic reactions during starvation. In recent years, this classical view has been dramatically expanded by the discovery of new roles of the lysosome in nutrient sensing, transcriptional regulation, and metabolic homeostasis. These discoveries have elevated the lysosome to a decision-making center involved in the control of cellular growth and survival. Here we review these recently discovered properties of the lysosome, with a focus on how lysosomal signaling pathways respond to external and internal cues and how they ultimately enable metabolic homeostasis and cellular adaptation.


Asunto(s)
Metabolismo Energético , Lisosomas/metabolismo , Adaptación Fisiológica , Aminoácidos/metabolismo , Animales , Regulación de la Expresión Génica , Homeostasis , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Neuropéptidos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética
11.
Nat Commun ; 6: 5951, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25575350

RESUMEN

Akt2 and its downstream effectors mediate insulin-stimulated GLUT4-storage vesicle (GSV) translocation and fusion with the plasma membrane (PM). Using mass spectrometry, we identify actin-capping protein Tropomodulin 3 (Tmod3) as an Akt2-interacting partner in 3T3-L1 adipocytes. We demonstrate that Tmod3 is phosphorylated at Ser71 on insulin-stimulated Akt2 activation, and Ser71 phosphorylation is required for insulin-stimulated GLUT4 PM insertion and glucose uptake. Phosphorylated Tmod3 regulates insulin-induced actin remodelling, an essential step for GSV fusion with the PM. Furthermore, the interaction of Tmod3 with its cognate tropomyosin partner, Tm5NM1 is necessary for GSV exocytosis and glucose uptake. Together these results establish Tmod3 as a novel Akt2 effector that mediates insulin-induced cortical actin remodelling and subsequent GLUT4 membrane insertion. Our findings suggest that defects in cytoskeletal remodelling may contribute to impaired GLUT4 exocytosis and glucose uptake.


Asunto(s)
Actinas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tropomodulina/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Plaquetas/metabolismo , Membrana Celular/metabolismo , Exocitosis , Glucosa/metabolismo , Humanos , Lentivirus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Fosforilación
12.
Mol Cell Biol ; 35(10): 1686-99, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25733684

RESUMEN

In obesity, adipocyte hypertrophy and proinflammatory responses are closely associated with the development of insulin resistance in adipose tissue. However, it is largely unknown whether adipocyte hypertrophy per se might be sufficient to provoke insulin resistance in obese adipose tissue. Here, we demonstrate that lipid-overloaded hypertrophic adipocytes are insulin resistant independent of adipocyte inflammation. Treatment with saturated or monounsaturated fatty acids resulted in adipocyte hypertrophy, but proinflammatory responses were observed only in adipocytes treated with saturated fatty acids. Regardless of adipocyte inflammation, hypertrophic adipocytes with large and unilocular lipid droplets exhibited impaired insulin-dependent glucose uptake, associated with defects in GLUT4 trafficking to the plasma membrane. Moreover, Toll-like receptor 4 mutant mice (C3H/HeJ) with high-fat-diet-induced obesity were not protected against insulin resistance, although they were resistant to adipose tissue inflammation. Together, our in vitro and in vivo data suggest that adipocyte hypertrophy alone may be crucial in causing insulin resistance in obesity.


Asunto(s)
Adipocitos/efectos de los fármacos , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos no Esterificados/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Células 3T3-L1 , Adipocitos/inmunología , Animales , Membrana Celular/metabolismo , Citocinas/metabolismo , Grasas de la Dieta/administración & dosificación , Técnicas In Vitro , Gotas Lipídicas/metabolismo , Masculino , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Obesidad/inducido químicamente , Obesidad/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
13.
Bioarchitecture ; 4(6): 210-4, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26280982

RESUMEN

It is well established that insulin-induced remodeling of actin filaments into a cortical mesh is required for insulin-stimulated GLUT4 exocytosis. Akt2 and its downstream effectors play a pivotal role in mediating the translocation and membrane fusion of GLUT4-storage vesicle (GSV). However, the direct downstream effector underlying the event of cortical actin reorganization has not been elucidated. In a recent study in Nature Communications, (1) Lim et al identify Tropomodulin3 (Tmod3) as a downstream target of the Akt2 kinase and describe the role of this pointed-end actin-capping protein in regulating insulin-dependent exocytosis of GSVs in adipocytes through the remodeling of the cortical actin network. Phosphorylation of Tmod3 by Akt2 on Ser71 modulates insulin-induced actin remodeling, a key step for GSV fusion with the plasma membrane (PM). Furthermore, the authors establish Tm5NM1 (Tpm3.1 in new nomenclature) (2) as the cognate tropomyosin partner of Tmod3, and an essential role of Tmod3-Tm5NM1 interaction for GSV exocytosis and glucose uptake. This study elucidates a novel effector of Akt2 that provides a direct mechanistic link between Akt2 signaling and actin reorganization essential for vesicle fusion, and suggests that a subset of actin filaments with specific molecular compositions may be dedicated for the process of vesicle fusion.


Asunto(s)
Actinas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tropomodulina/metabolismo , Animales , Humanos , Masculino
14.
J Endocrinol ; 219(2): 131-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23959078

RESUMEN

Neonatal overnutrition results in accelerated development of high-fat diet (HFD)-induced metabolic defects in adulthood. To understand whether the increased susceptibility was associated with aggravated inflammation and dysregulated lipid metabolism, we studied metabolic changes and insulin signaling in a chronic postnatal overnutrition (CPO) mouse model. Male Swiss Webster pups were raised with either three pups per litter to induce CPO or ten pups per litter as control (CTR) and weaned to either low-fat diet (LFD) or HFD. All animals were killed on the postnatal day 150 (P150) except for a subset of mice killed on P15 for the measurement of stomach weight and milk composition. CPO mice exhibited accelerated body weight gain and increased body fat mass prior to weaning and the difference persisted into adulthood under conditions of both LFD and HFD. As adults, insulin signaling was more severely impaired in epididymal white adipose tissue (WAT) from HFD-fed CPO (CPO-HFD) mice. In addition, HFD-induced upregulation of pro-inflammatory cytokines was exaggerated in CPO-HFD mice. Consistent with greater inflammation, CPO-HFD mice showed more severe macrophage infiltration than HFD-fed CTR (CTR-HFD) mice. Furthermore, when compared with CTR-HFD mice, CPO-HFD mice exhibited reduced levels of several lipogenic enzymes in WAT and excess intramyocellular lipid accumulation. These data indicate that neonatal overnutrition accelerates the development of insulin resistance and exacerbates HFD-induced metabolic defects, possibly by worsening HFD-induced inflammatory response and impaired lipid metabolism.


Asunto(s)
Animales Recién Nacidos/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Hipernutrición/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Citocinas/metabolismo , Grasas de la Dieta/farmacología , Modelos Animales de Enfermedad , Insulina/fisiología , Resistencia a la Insulina/fisiología , Trastornos del Metabolismo de los Lípidos/etiología , Trastornos del Metabolismo de los Lípidos/metabolismo , Masculino , Ratones , Músculo Esquelético/metabolismo , Transducción de Señal/fisiología
15.
Endocrinology ; 151(5): 2050-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20215569

RESUMEN

Maintenance of glucose homeostasis depends on adequate amount and precise pattern of insulin secretion, which is determined by both beta-cell secretory processes and well-developed microvascular network within endocrine pancreas. The development of highly organized microvasculature and high degrees of capillary fenestrations in endocrine pancreas is greatly dependent on vascular endothelial growth factor-A (VEGF-A) from islet cells. However, it is unclear how VEGF-A production is regulated in endocrine pancreas. To understand whether signal transducer and activator of transcription (STAT)-3 is involved in VEGF-A regulation and subsequent islet and microvascular network development, we generated a mouse line carrying pancreas-specific deletion of STAT3 (p-KO) and performed physiological analyses both in vivo and using isolated islets, including glucose and insulin tolerance tests, and insulin secretion measurements. We also studied microvascular network and islet development by using immunohistochemical methods. The p-KO mice exhibited glucose intolerance and impaired insulin secretion in vivo but normal insulin secretion in isolated islets. Microvascular density in the pancreas was reduced in p-KO mice, along with decreased expression of VEGF-A, but not other vasotropic factors in islets in the absence of pancreatic STAT3 signaling. Together, our study suggests that pancreatic STAT3 signaling is required for the normal development and maintenance of endocrine pancreas and islet microvascular network, possibly through its regulation of VEGF-A.


Asunto(s)
Intolerancia a la Glucosa/fisiopatología , Insulina/metabolismo , Páncreas/irrigación sanguínea , Factor de Transcripción STAT3/metabolismo , Animales , Glucemia/metabolismo , Western Blotting , Calcio/metabolismo , Femenino , Intolerancia a la Glucosa/sangre , Inmunohistoquímica , Insulina/sangre , Secreción de Insulina , Masculino , Ratones , Ratones Noqueados , Neovascularización Fisiológica , Páncreas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
J Biol Chem ; 284(6): 3719-27, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19049975

RESUMEN

Leptin controls food intake and energy expenditure by regulating hypothalamic neuron activities. Leptin exerts its actions through complex signaling pathways including STAT3 phosphorylation, nuclear translocation, and binding to target gene promoter/cofactor complexes. Deficient or defective leptin signaling leads to obesity, which may be caused by insufficient leptin levels and/or resistance to leptin signaling. To understand the molecular mechanisms of leptin resistance, we studied the regulation of pro-opiomelanocortin (POMC) gene expression by leptin. We show that phospho-STAT3 activates POMC promoter in response to leptin signaling through a mechanism that requires an SP1-binding site in the POMC promoter. Furthermore, FoxO1 binds to STAT3 and prevents STAT3 from interacting with the SP1.POMC promoter complex, and consequently, inhibits STAT3-mediated leptin action. Our study suggests that leptin action could be inhibited at a step downstream of STAT3 phosphorylation and nuclear translocation, and provides a potential mechanism of leptin resistance in which an increased FoxO1 antagonizes STAT3-mediated leptin signaling.


Asunto(s)
Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Leptina/farmacología , Proopiomelanocortina/biosíntesis , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción Sp1/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/fisiología , Animales , Línea Celular , Proteína Forkhead Box O1 , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Leptina/metabolismo , Masculino , Ratones , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Regiones Promotoras Genéticas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA