Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31996427

RESUMEN

Human papillomavirus (HPV) type 58 is the third most commonly detected HPV type in cervical cancer among Eastern Asians. Our previous international epidemiological studies revealed that HPV58 carrying an E7 natural variant, T20I/G63S (designated V1), was associated with a higher risk of cervical cancer. We recently showed that V1 possesses a greater ability to immortalize and transform primary cells, as well as degrading pRB more effectively, than the prototype and other common variants. In this study, we performed a series of phenotypic and molecular assays using physiologically relevant in vitro and in vivo models to compare the oncogenicity of V1 with that of the prototype and other common natural variants. Through activation of the AKT and K-Ras/extracellular signal-regulated kinase (ERK) signaling pathways, V1 consistently showed greater oncogenicity than the prototype and other variants, as demonstrated by increased cell proliferation, migration, and invasion, as well as induction of larger tumors in athymic nude mice. This study complements our previous epidemiological and molecular observations pinpointing the higher oncogenicity of V1 than that of the prototype and all other common variants. Since V1 is more commonly found in eastern Asia, our report provides insight into the design of HPV screening assays and selection of components for HPV vaccines in this region.IMPORTANCE Epidemiological studies have revealed that a wild-type variant of HPV58 carrying an E7 variation, T20I/G63S (V1), is associated with a higher risk of cervical cancer. We previously reported that this increased oncogenicity could be the result of the virus's greater ability to degrade pRB, thereby leading to an increased ability to grow in an anchorage-independent manner. In addition to this, this report further showed that this HPV variant induced activation of the AKT and K-Ras/ERK signaling pathways, thereby explaining its genuine oncogenicity in promoting cell proliferation, migration, invasion, and formation of tumors, all to a greater extent than the prototype HPV58 and other common variants.


Asunto(s)
Papillomaviridae/clasificación , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Animales , Pueblo Asiatico , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Variación Genética , Humanos , Ratones , Ratones Desnudos , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Vacunas contra Papillomavirus , Ratas , Neoplasias del Cuello Uterino/virología
2.
Cell Microbiol ; 19(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28778116

RESUMEN

Caveolae are composed of 2 major proteins, caveolin 1 (CAV1) and cavin 1 or polymerase transcript release factor I (CAVIN1). Here, we demonstrate that CAV1 levels modulate invasion of Group A Streptococcus (GAS) into nonphagocytic mammalian cells. GAS showed enhanced internalisation into CAV1-knockout mouse embryonic fibroblasts and CAV1 knockdown human epithelial HEp-2 cells, whereas overexpression of CAV1 in HEp-2 cells reduced GAS invasion. This effect was not dependent on the expression of the GAS fibronectin binding protein SfbI, which had previously been implicated in caveolae-mediated uptake. Nor was this effect dependent on CAVIN1, as knockout of CAVIN1 in mouse embryonic fibroblasts resulted in reduced GAS internalisation. Although CAV1 restricted GAS invasion into host cells, we observed only minimal association of invading GAS (strain M1T15448 ) with CAV1 by immunofluorescence and very low association of invading M1T15448 with caveolae by transmission electron microscopy. These observations suggest that physical interaction with caveolae is not needed for CAV1 restriction of invading GAS. An indirect mechanism of action is also consistent with the finding that changing membrane fluidity reverses the increased invasion observed in CAV1-null cells. Together, these results suggest that CAV1 protects host cells against GAS invasion by a caveola-independent mechanism.


Asunto(s)
Caveolina 1/metabolismo , Endocitosis , Células Epiteliales/inmunología , Fibroblastos/inmunología , Factores Inmunológicos/metabolismo , Streptococcus pyogenes/inmunología , Animales , Línea Celular , Células Epiteliales/microbiología , Fibroblastos/microbiología , Humanos , Ratones Noqueados
3.
Toxics ; 10(8)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893847

RESUMEN

Microplastics are recognised as a ubiquitous and hazardous pollutant worldwide. These small-sized particles have been detected in human faeces collected from a number of cities, providing evidence of human ingestion of microplastics and their presence in the gastrointestinal tract. Here, using Raman spectroscopy, we identified an average of 50 particles g-1 (20.4-138.9 particles g-1 wet weight) in faeces collected from a healthy cohort in Hong Kong. This quantity was about five times higher than the values reported in other places in Asia and Europe. Polystyrene was the most abundant polymer type found in the faeces, followed by polypropylene and polyethylene. These particles were primarily fragments, but about two-thirds of the detected polyethylene terephthalate were fibres. More than 88% of the microplastics were smaller than 300 µm in size. Our study provides the first data on the faecal level, and thus the extent of ingestion, of microplastics in Hong Kong's population. This timely assessment is crucial and supports the recently estimated ingestion rate of microplastics by Hong Kong residents through seafood consumption, which is one of the highest worldwide. These findings may be applicable to other coastal populations in South China with similar eating habits.

4.
Curr Opin Immunol ; 36: 1-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25966310

RESUMEN

Vaccines have been developed and deployed against several important bacterial pathogens of humans, including Neisseria meningitidis, Bordetella pertussis, Streptococcus pneumoniae and Mycobacterium tuberculosis. These vaccines are generally considered a successful public health measure and are effective at controlling disease symptoms and/or burden. However, a troubling consequence of recent vaccination programs has been the selection of vaccine escape mutants, whereby the pathogen displays a different repertoire of immune targets than those represented in the vaccine formulation. To address these issues of antigenic variation and bacterial evolution, continued and sustained efforts in epidemiological surveillance, vaccine development/formulation research, and understanding of the host-pathogen interaction are required.


Asunto(s)
Bacterias/inmunología , Vacunas Bacterianas/inmunología , Interacciones Huésped-Patógeno/inmunología , Vacunación , Animales , Variación Antigénica/inmunología , Antígenos Bacterianos/inmunología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/prevención & control , Humanos , Vacunación/métodos
5.
Cell Host Microbe ; 14(6): 675-82, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24331465

RESUMEN

Autophagy is reported to be an important innate immune defense against the intracellular bacterial pathogen Group A Streptococcus (GAS). However, the GAS strains examined to date belong to serotypes infrequently associated with human disease. We find that the globally disseminated serotype M1T1 clone of GAS can evade autophagy and replicate efficiently in the cytosol of infected cells. Cytosolic M1T1 GAS (strain 5448), but not M6 GAS (strain JRS4), avoids ubiquitylation and recognition by the host autophagy marker LC3 and ubiquitin-LC3 adaptor proteins NDP52, p62, and NBR1. Expression of SpeB, a streptococcal cysteine protease, is critical for this process, as an isogenic M1T1 ΔspeB mutant is targeted to autophagy and attenuated for intracellular replication. SpeB degrades p62, NDP52, and NBR1 in vitro and within the host cell cytosol. These results uncover a proteolytic mechanism utilized by GAS to escape the host autophagy pathway that may underpin the success of the M1T1 clone.


Asunto(s)
Autofagia , Interacciones Huésped-Patógeno , Evasión Inmune , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/fisiología , Proteínas Bacterianas/metabolismo , Línea Celular , Citosol/microbiología , Exotoxinas/metabolismo , Humanos , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA