Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 364: 143010, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098349

RESUMEN

Dosimetry modeling and point of departure (POD) estimation using in vitro data are essential for mechanism-based hazard identification and risk assessment. This study aimed to develop a putative adverse outcome pathway (AOP) for humidifier disinfectant (HD) substances used in South Korea through a systematic review and benchmark dose (BMD) modeling. We collected in vitro toxicological studies on HD substances, including polyhexamethylene guanidine hydrochloride (PHMG-HCl), PHMG phosphate (PHMG-p), a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (CMIT/MIT), CMIT, and MIT from scientific databases. A total of 193 sets of dose-response data were extracted from 34 articles reporting in vitro experimental results of HD toxicity. The risk of bias (RoB) in each study was assessed following the office of health assessment and translation (OHAT) guideline. The BMD of each HD substance at different toxicity endpoints was estimated using the US Environmental Protection Agency (EPA) BMD software (BMDS). Interspecies- or interorgan differences or most critical effects in the toxicity of the HD substances were analyzed using a 95% lower confidence limit of the BMD (BMDL). We found a critical molecular event and cells susceptible to each HD substance and constructed an AOP of PHMG-p- or CMIT/MIT-induced damage. Notably, PHMG-p induced ATP depletion at the lowest in vitro concentration, endoplasmic reticulum (ER) stress, epithelial-to-mesenchymal transition (EMT), inflammation, leading to fibrosis. CMIT/MIT enhanced mitochondrial reactive oxygen species (ROS) production, oxidative stress, mitochondrial dysfunction, resulting in cell death. Our approach will increase the current understanding of the effects of HD substances on human health and contribute to evidence-based risk assessment of these compounds.

2.
Epidemiol Health ; : e2024060, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39026433

RESUMEN

Objectives: Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease. Methods: We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into 3 lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway-adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases. Results: The integration of each AEP-AOP component for PHMG and CMIT/MIT led to the development of an AEP-AOP model, wherein disinfectants released from humidifiers in aerosol or gaseous form reached target sites, causing respiratory damage through molecular initiating events and key events. The model demonstrated high reliability and relevance to the pathogenesis of respiratory diseases. Conclusion: The AEP-AOP model developed in this study provides strong evidence that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.

3.
Sci Rep ; 14(1): 7178, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531959

RESUMEN

Polyhexamethylene guanidine phosphate (PHMG-p) is a major component in humidifier disinfectants, which cause life-threatening lung injuries. However, to our knowledge, no published studies have investigated associations between PHMG-p dose and lung damage severity with long-term follow-up. Therefore, we evaluated longitudinal dose-dependent changes in lung injuries using repeated chest computed tomography (CT). Rats were exposed to low (0.2 mg/kg, n = 10), intermediate (1.0 mg/kg, n = 10), and high (5.0 mg/kg, n = 10) doses of PHMG-p. All rats underwent repeated CT scans after 10 and 40 weeks following the first exposure. All CT images were quantitatively analyzed using commercial software. Inflammation/fibrosis and tumor counts underwent histopathological evaluation. In both radiological and histopathologic results, the lung damage severity increased as the PHMG-p dose increased. Moreover, the number, size, and malignancy of the lung tumors increased as the dose increased. Bronchiolar-alveolar hyperplasia developed in all groups. During follow-up, there was intergroup variation in bronchiolar-alveolar hyperplasia progression, although bronchiolar-alveolar adenomas or carcinomas usually increase in size over time. Thirty-three carcinomas were detected in the high-dose group in two rats. Overall, lung damage from PHMG-p and the number and malignancy of lung tumors were shown to be dose-dependent in a rat model using repeated chest CT scans during a long-term follow-up.


Asunto(s)
Carcinoma , Lesión Pulmonar , Neoplasias Pulmonares , Ratas , Animales , Estudios de Seguimiento , Carcinógenos , Hiperplasia , Guanidinas , Carcinogénesis
4.
Epidemiol Health ; 45: e2023095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37905312

RESUMEN

OBJECTIVES: Inhalation exposure to humidifier disinfectants has resulted to various types of health damages in Korea. To determine the epidemiological correlation necessary for presuming the legal causation, we aimed to develop a method to synthesize the entire evidence. METHODS: Epidemiological and toxicological studies are systematically reviewed. Target health problems are selected by criteria such as frequent complaints of claimants. Relevant epidemiologic studies are reviewed and the risk of bias and confidence level of the total evidence are evaluated. Toxicological literature reviews are conducted on three lines of evidence including hazard information, animal studies, and mechanistic studies, considering the source-to-exposure-to-outcome continuum. The confidence level of the body of evidence is then translated into the toxicological evidence levels for the causality between humidifier disinfectant exposure and health effects. Finally, the levels of epidemiological and toxicological evidence are synthesized. RESULTS: Under the Special Act revised in 2020, if the history of exposure and the disease occurred/worsened after exposure were approved, and the epidemiological correlation between the exposure and disease was verified, the legal causation is presumed unless the company proves the evidence against it. The epidemiological correlation can be verified through epidemiological investigations, health monitoring, cohort investigations and/or toxicological studies. It is not simply as statistical association as understood in judicial precedents, but a general causation established by the evidence as a whole, i.e., through weight-of-the-evidence approach. CONCLUSIONS: The weight-of-the-evidence approach differs from the conclusive single study approach and this systematic evidence integration can be used in presumption of causation.


Asunto(s)
Desinfectantes , Humidificadores , Animales , Humanos , Desinfectantes/toxicidad , Exposición por Inhalación/efectos adversos , Causalidad
5.
Int J Environ Res Public Health ; 11(4): 4326-39, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24747540

RESUMEN

Emissions of volatile organic compounds (VOCs) and carbonyls from three types of commercially available wallpapers (i.e., PVC-coated, paper-backed, natural material-coated) in Korea were evaluated using a 20 L small chamber. A total of 332 products were tested for emission factors, frequencies of occurrence and composition ratios. Toluene and formaldehyde concentrations were below Korean standard values for all products; however, the total VOC (TVOC) concentrations exceeded current standards (4.0 mg/m²·h) for 30 products. The TVOC emission factor for PVC-coated wallpapers, for which polymer materials are used in the manufacturing process, was seven and 16 times higher than those of paper-backed and natural material-coated wallpapers, respectively. The detection frequencies for toluene and formaldehyde were the highest (82.5%) and fourth highest (79.5%), respectively among the 50 target chemical species. The composition ratios for BTEX ranged from 0.3% to 5.1% and unidentified VOCs, which were not qualitatively analyzed using standard gas methods, ranged from 90.2% to 94.8%. Among six carbonyl compounds (acrolein was not detected in any type of wallpaper), acetone had the highest concentrations in PVC-coated (44.6%) and paper-backed (66.6%) wallpapers. Formaldehyde emissions were highest (64.6%) for natural material-coated wallpapers, a result of the formaldehyde-based resin used in the manufacturing process for these products.


Asunto(s)
Contaminantes Atmosféricos/análisis , Diseño Interior y Mobiliario , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior , Monitoreo del Ambiente , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA