Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
BMC Genomics ; 18(1): 695, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28874115

RESUMEN

BACKGROUND: Zinc finger homeodomain proteins (ZHD) constitute a plant-specific transcription factor family with a conserved DNA binding homeodomain and a zinc finger motif. Members of the ZHD protein family play important roles in plant growth, development, and stress responses. Genome-wide characterization of ZHD genes has been carried out in several model plants, including Arabidopsis thaliana and Oryza sativa, but not yet in tomato (Solanum lycopersicum). RESULTS: In this study, we performed the first comprehensive genome-wide characterization and expression profiling of the ZHD gene family in tomato (Solanum lycopersicum). We identified 22 SlZHD genes and classified them into six subfamilies based on phylogeny. The SlZHD genes were generally conserved in each subfamily, with minor variations in gene structure and motif distribution. The 22 SlZHD genes were distributed on six of the 12 tomato chromosomes, with segmental duplication detected in four genes. Analysis of Ka/Ks ratios revealed that the duplicated genes are under negative or purifying selection. Comprehensive expression analysis revealed that the SlZHD genes are widely expressed in various tissues, with most genes preferentially expressed in flower buds compared to other tissues. Moreover, many of the genes are responsive to abiotic stress and phytohormone treatment. CONCLUSION: Systematic analysis revealed structural diversity among tomato ZHD proteins, which indicates the possibility for diverse roles of SlZHD genes in different developmental stages as well as in response to abiotic stresses. Our expression analysis of SlZHD genes in various tissues/organs and under various abiotic stress and phytohormone treatments sheds light on their functional divergence. Our findings represent a valuable resource for further analysis to explore the biological functions of tomato ZHD genes.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Solanum lycopersicum/genética , Estrés Fisiológico/genética , Dedos de Zinc , Cromosomas de las Plantas/genética , Duplicación de Gen , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Especificidad de Órganos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Sintenía/genética
2.
BMC Plant Biol ; 17(1): 149, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28874121

RESUMEN

BACKGROUND: Sodium nitroprusside (SNP) has been previously shown to extend the vase life of various cut flowers; however, its positive effect on extending vase life of carnations has not been well documented. Moreover, the role of SNP in the mechanisms underlying determination of vase life of cut carnations has also not been well addressed. RESULTS: SNP increased vase life of Tico Viola carnations along with their relative fresh weight (RFW). Among the treatments, the flowers treated with 10 mg L-1 SNP had the longest vase life and maximum relative fresh weight (RFW). This was achieved through significant suppression of ethylene production via downregulation of ethylene biosynthesis and petal senescence-related genes, and through an increase in the scavenging mechanism of reactive oxygen species (ROS) by antioxidant activity during flower vase life. In addition, the positive efficacy of SNP could also be confirmed using 1-aminocyclopropane-1-carboxylic acid (ACC) and different cultivars, resulting in similar trends for both experiments. CONCLUSION: Taken together, these results suggest that SNP plays a crucial role in multiple modes of action that are associated with the longevity of cut carnation flowers.


Asunto(s)
Dianthus/fisiología , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Antioxidantes/metabolismo , Dianthus/efectos de los fármacos , Dianthus/genética , Etilenos/metabolismo , Flores/efectos de los fármacos , Flores/fisiología , Genes de Plantas , Genotipo , Especificidad de la Especie
3.
BMC Plant Biol ; 17(1): 65, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335727

RESUMEN

BACKGROUND: Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. RESULTS: In tobacco (Nicotiana tabacum 'Xanthi'), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines displayed different anthocyanin colors (e.g., pale red: T0-P, red: T0-R, and strong red: T0-S), resulting from varying levels of biosynthetic gene transcripts. Under salt stress, the T2 generation had higher total polyphenol content, radical (DPPH, ABTS) scavenging activities, antioxidant-related gene expression, as well as overall greater salt and drought tolerance than wild type (WT). CONCLUSION: We propose that Del overexpression elevates transcript levels of anthocyanin biosynthetic and antioxidant-related genes, leading to enhanced anthocyanin production and antioxidant activity. The resultant increase of anthocyanin and antioxidant activity improves abiotic stress tolerance.


Asunto(s)
Antocianinas/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotiana/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Nicotiana/efectos de los fármacos
4.
Int J Mol Sci ; 18(5)2017 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-28505092

RESUMEN

Growth regulating factors (GRFs) are plant-specific transcription factors that are involved in diverse biological and physiological processes, such as growth, development and stress and hormone responses. However, the roles of GRFs in vegetative and reproductive growth, development and stress responses in tomato (Solanum lycopersicum) have not been extensively explored. In this study, we characterized the 13 SlGRF genes. In silico analysis of protein motif organization, intron-exon distribution, and phylogenetic classification confirmed the presence of GRF proteins in tomato. The tissue-specific expression analysis revealed that most of the SlGRF genes were preferentially expressed in young and growing tissues such as flower buds and meristems, suggesting that SlGRFs are important during growth and development of these tissues. Some of the SlGRF genes were preferentially expressed in fruits at distinct developmental stages suggesting their involvement in fruit development and the ripening process. The strong and differential expression of different SlGRFs under NaCl, drought, heat, cold, abscisic acid (ABA), and jasmonic acid (JA) treatment, predict possible functions for these genes in stress responses in addition to their growth regulatory functions. Further, differential expression of SlGRF genes upon gibberellic acid (GA3) treatment indicates their probable function in flower development and stress responses through a gibberellic acid (GA)-mediated pathway. The results of this study provide a basis for further functional analysis and characterization of this important gene family in tomato.


Asunto(s)
Meristema/genética , Reguladores del Crecimiento de las Plantas/genética , Solanum lycopersicum/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Familia de Multigenes/genética , Filogenia , Alineación de Secuencia
5.
Theor Appl Genet ; 129(7): 1357-1372, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27038817

RESUMEN

KEYMESSAGE: This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


Asunto(s)
Genoma de Planta , Raphanus/genética , Brassica/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Hibridación Genómica Comparativa , ADN de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN
6.
Theor Appl Genet ; 128(2): 259-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403353

RESUMEN

KEY MESSAGE: This manuscript provides a genetic map of Raphanus sativus that has been used as a reference genetic map for an ongoing genome sequencing project. The map was constructed based on genotyping by whole-genome resequencing of mapping parents and F 2 population. Raphanus sativus is an annual vegetable crop species of the Brassicaceae family and is one of the key plants in the seed industry, especially in East Asia. Assessment of the R. sativus genome provides fundamental resources for crop improvement as well as the study of crop genome structure and evolution. With the goal of anchoring genome sequence assemblies of R. sativus cv. WK10039 whose genome has been sequenced onto the chromosomes, we developed a reference genetic map based on genotyping of two parents (maternal WK10039 and paternal WK10024) and 93 individuals of the F2 mapping population by whole-genome resequencing. To develop high-confidence genetic markers, ~83 Gb of parental lines and ~591 Gb of mapping population data were generated as Illumina 100 bp paired-end reads. High stringent sequence analysis of the reads mapped to the 344 Mb of genome sequence scaffolds identified a total of 16,282 SNPs and 150 PCR-based markers. Using a subset of the markers, a high-density genetic map was constructed from the analysis of 2,637 markers spanning 1,538 cM with 1,000 unique framework loci. The genetic markers integrated 295 Mb of genome sequences to the cytogenetically defined chromosome arms. Comparative analysis of the chromosome-anchored sequences with Arabidopsis thaliana and Brassica rapa revealed that the R. sativus genome has evident triplicated sub-genome blocks and the structure of gene space is highly similar to that of B. rapa. The genetic map developed in this study will serve as fundamental genomic resources for the study of R. sativus.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Técnicas de Genotipaje , Raphanus/genética , Hibridación Genómica Comparativa , ADN de Plantas/genética , Marcadores Genéticos , Genotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
7.
Plant Cell Rep ; 34(9): 1477-88, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26123291

RESUMEN

KEY MESSAGE: The innovations in chromosome engineering have improved the efficiency of interrogation breeding, and the identification and transfer of resistance genes from alien to native species. Recent advances in molecular biology and cytogenetics have brought revolutionary, conceptual developments in mitosis and meiosis research, chromosome structure and manipulation, gene expression and regulation, and gene silencing. Cytogenetic studies offer integrative tools for imaging, genetics, epigenetics, and cytological information that can be employed to enhance chromosome and molecular genomic research in plant taxa. In situ hybridization techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), can identify chromosome morphologies and sequences, amount and distribution of various types of chromatin in chromosomes, and genome organization during the metaphase stage of meiosis. Over the past few decades, various new molecular cytogenetic applications have been developed. The FISH and GISH techniques present an authentic model for analyzing the individual chromosome, chromosomal segments, or the genomes of natural and artificial hybrid plants. These have become the most reliable techniques for studying allopolyploids, because most cultivated plants have been developed through hybridization or polyploidization. Moreover, introgression of the genes and chromatin from the wild types into cultivated species can also be analyzed. Since hybrid derivatives may have variable alien chromosome numbers or chromosome arms, the use of these approaches opens new avenues for accurately identifying genome differences.


Asunto(s)
Análisis Citogenético/métodos , Genoma de Planta , Hibridación Fluorescente in Situ/métodos , Plantas/genética , Cromosomas de las Plantas/genética , Hibridación Genética , Cariotipificación , Recombinación Genética/genética
8.
Theor Appl Genet ; 127(9): 1975-89, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056003

RESUMEN

KEY MESSAGE: This manuscript provides a Brassica conserved ortholog set (COS) that can be used as diagnostic cross-species markers as well as tools for genetic mapping and genome comparison of the Brassicaceae. A conserved ortholog set (COS) is a collection of genes that are conserved in both sequence and copy number between closely related genomes. COS is a useful resource for developing gene-based markers and is suitable for comparative genome mapping. We developed a COS for Brassica based on proteome comparisons of Arabidopsis thaliana, B. rapa, and B. oleracea to establish a basis for comparative genome analysis of crop species in the Brassicaceae. A total of 1,194 conserved orthologous single-copy genes were identified from the genomes based on whole-genome BLASTP analysis. Gene ontology analysis showed that most of them encoded proteins with unknown function and chloroplast-related genes were enriched. In addition, 152 Brassica COS primer sets were applied to 16 crop and wild species of the Brassicaceae and 57.9-92.8 % of them were successfully amplified across the species representing that a Brassica COS can be used as diagnostic cross-species markers of diverse Brassica species. We constructed a genetic map of Raphanus sativus by analyzing the segregation of 322 COS genes in an F2 population (93 individuals) of Korean cultivars (WK10039 × WK10024). Comparative genome analysis based on the COS genes showed conserved genome structures between R. sativus and B. rapa with lineage-specific rearrangement and fractionation of triplicated subgenome blocks indicating close evolutionary relationship and differentiation of the genomes. The Brassica COS developed in this study will play an important role in genetic, genomic, and breeding studies of crop Brassicaceae species.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Raphanus/genética , Brassica/genética , Secuencia Conservada , ADN de Plantas/genética , Análisis de Secuencia de ADN , Sintenía
9.
Plant Cell Rep ; 33(2): 215-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24311154

RESUMEN

Unreduced gamete formation derived via abnormal meiotic cell division is an important approach to polyploidy breeding. This process is considered the main driving force in spontaneous polyploids formation in nature, but the potential application of these gametes to plant breeding has not been fully exploited. An effective mechanism for their artificial induction is needed to attain greater genetic variation and enable efficient use of unreduced gametes in breeding programs. Different approaches have been employed for 2n-pollen production including interspecific hybridization, manipulation of environmental factors and treatment with nitrous oxide, trifluralin, colchicine, oryzalin and other chemicals. These chemicals can act as a stimulus to produce viable 2n pollen; however, their exact mode of action, optimum concentration and developmental stages are still not known. Identification of efficient methods of inducing 2n-gamete formation will help increase pollen germination of sterile interspecific hybrids for inter-genomic recombination and introgression breeding to develop new polyploid cultivars and increase heterozygosity among plant populations. Additionally, the application of genomic tools and identification and isolation of genes and mechanisms involved in the induction of 2n-gamete will enable increased exploitation in different plant species, which will open new avenues for plant breeding.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Plantas/genética , Cruzamiento , Colchicina/farmacología , Cruzamientos Genéticos , Diploidia , Ambiente , Células Germinativas de las Plantas , Hibridación Genética , Meiosis , Óxido Nitroso/farmacología , Plantas/efectos de los fármacos , Polen/efectos de los fármacos , Polen/genética , Trifluralina/farmacología
10.
Plant Sci ; : 112236, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39186951

RESUMEN

Polyploidy is thought to be an evolutionary and systematic mechanism for gene flow and phenotypic advancement in flowering plants. It is a natural phenomenon that promotes diversity by creating new permutations enhancing the prime potentials as compared to progenitors. Two different pathways have been recognized in studying polyploidy in nature; mitotic or somatic chromosome doubling and cytogenetics variation. Secondly, the vital influence of being polyploid is its heritable property (unreduced reproductive cells) formed during first and second-division restitution (FDR & SDR). Different approaches either chemical (Colchicine, Oryzalin, Caffeine, Trifuralin, or phosphoric amides) or gaseous i.e. Nitrous oxide have been deliberated as strong polyploidy causing agents. A wide range of cytogenetic practices like chromosomes study, ploidy, genome analysis, and plant morphology and anatomy have been studied in different plant species. Flow cytometry for ploidy and chromosome analysis through fluorescence and genomic in situ hybridization (FISH & GISH) are the basic methods to evaluate heredity substances sampled from leaves and roots. Many horticultural crops have been developed successfully and released commercially for consumption. Moreover, some deep detailed studies are needed to check the strong relationship between unique morphological features and genetic makeup concerning genes and hormonal expression in a strong approach.

11.
Plants (Basel) ; 13(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732480

RESUMEN

Fluorescence in situ hybridization (FISH), a molecular cytogenetic technique that enables the visualization and identification of specific DNA sequences within chromosomes, has emerged as a pivotal tool in plant breeding programs, particularly in the case of Veronica species. Veronica, a genus with a complex reproductive system, often poses challenges in accurately identifying hybrids because of its tendency to hybridize, which leads to intricate genetic variation. This study focused on the use of FISH as a prescreening method to identify true hybrids in Veronica breeding programs. FISH analysis was first performed on the parents to identify their 45S and 5S rDNA signals, along with their respective chromosome numbers. The signals were then compared with those of the twenty progenies with reference to their supposed parents. Five true hybrids, seven self-pollinated progenies, and eight false hybrids were identified through FISH. The findings highlight the significance of FISH as a screening method that contributes significantly to the efficiency of Veronica breeding programs by ensuring the preservation of desired genetic traits and minimizing the inadvertent inclusion of misidentified hybrids. To conclude, this study underscores the vital role of FISH in enhancing the precision and success of breeding programs and opens new avenues for improved breeding strategies and crop development.

12.
Genome ; 56(9): 495-503, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24168670

RESUMEN

Species of the genus Lilium are well known for their large genomes. Although expansion of noncoding repeated DNA is believed to account for this genome size, retroelement del Ty3-gypsy is the only one described so far in the genus Lilium. We isolated Ty1-copia elements from Lilium longiflorum and named them LIREs (lily retrotransposons). The long terminal repeats, primer binding site, and polypurine tract sequences are highly similar among the LIRE elements, indicating that they are in the same lineage. Although the protein-coding regions were highly decayed, the sequence motifs of the integrase, reverse transcriptase, and RNase H domains were identifiable as belonging to the order of Ty1-copia elements. Phylogenetic analysis and primer binding site sequences revealed that these elements belonged to the Ale lineage among the six lineages of plant Ty1-copia elements. Base substitutions in the long terminal repeats estimated that the integration times of the LIRE Ty1-copia elements were between 0.7 and 5.5 mya. In situ hybridization showed that the LIRE elements were present in all the chromosomes of L. longiflorum and L. lancifolium, but absent in centromeres, telomeres, and 45S rRNA sites in both species. The LIRE elements were present very abundantly in species of the genus Lilium, but absent in other genera of the family Liliaceae, implying that the LIRE elements might have contributed to the expansion of the genome in the genus Lilium.


Asunto(s)
ADN de Plantas/genética , Genoma de Planta , Lilium/genética , Retroelementos , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cromosomas de las Plantas , Evolución Molecular , Hibridación Fluorescente in Situ , Integrasas/química , Integrasas/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Análisis de Secuencia de ADN , Secuencias Repetidas Terminales
13.
Saudi J Biol Sci ; 28(3): 1770-1778, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33732061

RESUMEN

Self-fertilization (also termed selfing) is a mode of reproduction that occurs in hermaphrodites and has evolved several times in various plant and animal species. A transition from outbreeding to selfing in hermaphroditic flowers is typically associated with changes in flower morphology and functionality. This study aimed to identify genetic effects of selfing in the F2 progeny of F1 hybrid developed by crossing Lilium lancifolium with the Asiatic Lilium hybrid 'Dreamland.' Fluorescence in situ hybridization (FISH) and inter-simple sequence repeats (ISSR) techniques were used to detect genetic variations in plants produced by selfing. The FISH results showed that F1 hybrid were similar to the female parent (L. lancifolium) regarding the 45S loci, but F2 individuals showed variation in the number and location of the respective loci. In F2 progeny, F2-2, F2-3, F2-4, F2-5, and F2-8 hybrids expressed two strong and one weak 5S signal on chromosome 3, whereas F2-7 and F2-9 individuals expressed one strong and two weak signals. Only two strong 5S signals were detected in an F2-1 plant. The ISSR results showed a maximum similarity value of 0.6269 between the female parent and the F2-2 hybrid. Regarding similarity to the male parent, a maximum value of 0.6119 was found in the F2-1 and F2-2 hybrids. The highest genetic distance from L. lancifolium and the Asiatic Lilium hybrid 'Dreamland' was observed in the F2-4 progeny (0.6352 and 0.7547, respectively). Phylogenetic relationships showed that the F2 progeny were closer to the male parent than to the female parent. Self-fertilization showed effects on variation among the F2 progeny, and effects on the genome were confirmed using FISH and ISSR analyses.

14.
Plants (Basel) ; 9(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076554

RESUMEN

Plants endure many abiotic stresses, such as temperature (heat or frost), drought, and salt. Such factors are primary and frequent stressors that reduce agriculture crop yields. Often alterations in nutrient management and constituents, along with variations in biosynthetic capacity, ultimately reduce or halt plant growth. Genetically, stress is an environmental condition that interferes with complete genetic expression. A vast range of molecular genomic markers is available for the analysis of agricultural crops. These markers are classified into various groups based on how the markers are used: RAPD (Random amplified polymorphic DNA) markers serve to identify and screen hybrids based on salinity and drought stress tolerance, while simple sequence repeat (SSR) markers are excellent for the assessment of stress tolerance. Such markers also play an important role in the QTL (Quantitative trait loci) mapping of stress-related genes. Dehydrins for drought and saltol for salinity stresses are primitive genes which regulate responses to these conditions. Further, a focus on traits using single-gene single nucleotide polymorphisms (SNP) markers supports genetic mapping and the sequencing of stress-related traits in inbred lines. DNA markers facilitate marker-assisted breeding to enhance abiotic stress tolerance using advanced techniques and marker modification.

15.
Plants (Basel) ; 8(12)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783625

RESUMEN

The genus Lilium L. is widely distributed in the cold and temperate regions of the Northern Hemisphere and is one of the most valuable plant groups in the world. Regarding the classification of the genus Lilium, Comber's sectional classification, based on the natural characteristics, has been primarily used to recognize species and circumscribe the sections within the genus. Although molecular phylogenetic approaches have been attempted using different markers to elucidate their phylogenetic relationships, there still are unresolved clades within the genus. In this study, we constructed the species tree for the genus using 28 Lilium species plastomes, including three currently determined species (L. candidum, L. formosanum, and L. leichtlinii var. maximowiczii). We also sought to verify Comber's classification and to evaluate all loci for phylogenetic molecular markers. Based on the results, the genus was divided into two major lineages, group A and B, consisting of eastern Asia + Europe species and Hengduan Mountains + North America species, respectively. Sectional relationships revealed that the ancestor Martagon diverged from Sinomartagon species and that Pseudolirium and Leucolirion are polyphyletic. Out of all loci in that Lilium plastome, ycf1, trnF-ndhJ, and trnT-psbD regions are suggested as evaluated markers with high coincidence with the species tree. We also discussed the biogeographical diversification and long-distance dispersal event of the genus.

16.
Plant Methods ; 15: 110, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31592162

RESUMEN

BACKGROUND: Past research has shown that virus-induced phytoene desaturase (PDS) gene silencing via agroinjection in the attached and detached fruit of tomato plants results in a pale-yellow fruit phenotype. Although the PDS gene is often used as a marker for gene silencing in tomatoes, little is known about the role of PDS in fruit ripening. In this study, we investigated whether the pepper PDS gene silenced endogenous PDS genes in the fruit of two tomato cultivars, Dotaerang Plus and Legend Summer. RESULTS: We found that the pepper PDS gene successfully silenced endogenous PDS in tomato fruit at a silencing frequency of 100% for both cultivars. A pale-yellow silenced area was observed over virtually the entire surface of individual fruit due to the transcriptional reduction in phytoene desaturase (PDS), zeta-carotene (ZDS), prolycopene isomerase (CrtlSO), and beta-carotene hydroxylase (CrtR-b2), which are the carotenoid biosynthesis genes responsible for the red coloration in tomatoes. PDS silencing also affected the expression levels of the fruit-ripening genes Tomato AGAMOUS-LIKE1 (TAGL1), RIPENING INHIBITOR (RIN), pectin esterase gene (PE), lipoxygenase (LOX), FRUITFULL1/FRUITFUL2 (FUL1/FUL2), and the ethylene biosynthesis and response genes 1-aminocyclopropane-1-carboxylate oxidase 1 and 3 (ACO1 and ACO3) and ethylene-responsive genes (E4 and E8). CONCLUSION: These results suggest that PDS is a positive regulator of ripening in tomato fruit, which must be considered when using it as a marker for virus-induced gene silencing (VIGS) experiments in order to avoid fruit-ripening side effects.

17.
Mol Cells ; 25(2): 163-71, 2008 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18414016

RESUMEN

The genus Cynodon comprises ten species. The objective of this study was to evaluate the genetic diversity of Korean bermudagrasses at the morphological, cytological and molecular levels. Morphological parameters, the nuclear DNA content and ploidy levels were observed in 43 bermudagrass ecotypes. AFLP markers were evaluated to define the genetic diversity, and chromosome counts were made to confirm the inferred cytotypes. Nuclear DNA contents were in the ranges 1.42-1.56, 1.94-2.19, 2.54, and 2.77-2.85 pg/2C for the triploid, tetraploid, pentaploid, and hexaploid accessions, respectively. The inferred cytotypes were triploid (2n = 3x = 27), tetraploid (2n = 4x = 36), pentaploid (2n = 5x = 45), and hexaploid (2n = 6x = 54), but the majority of the collections were tetraploid (81%). Mitotic chromosome counts verified the corresponding ploidy levels. The fast growing fine-textured ecotypes had lower ploidy levels, while the pentaploids and hexaploids were coarse types. The genetic similarity ranged from 0.42 to 0.94 with an average of 0.64. UPGMA cluster analysis and principle coordinate analysis separated the ecotypes into 6 distinct groups. The genetic similarity suggests natural hybridization between the different cytotypes, which could be useful resources for future breeding and genetic studies.


Asunto(s)
Cynodon/citología , Cynodon/genética , Variación Genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Núcleo Celular/metabolismo , Cromosomas de las Plantas/metabolismo , Cynodon/anatomía & histología , ADN de Plantas/análisis , Citometría de Flujo , Geografía , Corea (Geográfico) , Mitosis , Filogenia , Análisis de Componente Principal
18.
Mitochondrial DNA B Resour ; 3(1): 120-121, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33490490

RESUMEN

Lilium washingtonianum Kellogg is native to Western America and grows on slope in high subalpine. In the present study, the complete plastome of L. washingtonianum was sequenced. The plastome sequence was 151,967 bp long, with a large single copy region of 81,393 bp, a small single copy region of 17,352 bp, and two inverted repeat regions of 26,611 bp each. Total 133 genes were identified, including 83 coding genes, 8 ribosomal RNAs, 38 transfer RNAs, and 4 pseudogenes. Among four pseudogenes, pseudo ndhF gene was the first to report among Lilium species so far. The phylogenetic position of L. washingtonianum was sister to L. superbum but American lilies were not monophyletic.

19.
Mitochondrial DNA B Resour ; 3(2): 478-479, 2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33474211

RESUMEN

Lilium pardalinum Kellogg is native to the Pacific Coast of the United States, and grows in woodland near streams. In the present study, the complete plastome of L. pardalinum was sequenced. The plastome sequence is 151,969 bp long with a large single copy, a small single copy, and two inverted repeat regions of length 81,401, 17,346, and 26,611 bp, respectively. A total of 133 genes were identified, including 82 coding genes, 8 ribosomal RNAs, 38 transfer RNAs, and 5 pseudogenes. Among the 5 pseudogenes, pseudo ndhF and ndhG genes were similar to that of L. washingtonianum and L. philadelphicum, respectively. Lilium pardalinum is sister to American lilies, except L. philadelphicum.

20.
Int J Genomics ; 2017: 7561909, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28459054

RESUMEN

Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH) techniques in horticultural plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA