Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32928781

RESUMEN

In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.


Asunto(s)
Núcleo Celular , Cromatina , Genoma , Células Madre Pluripotentes , Animales , Epigénesis Genética , Redes Reguladoras de Genes , Humanos
2.
Stem Cell Reports ; 15(6): 1260-1274, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296674

RESUMEN

The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore SET's function in early differentiation. Using immunoprecipitation coupled with protein quantitation by LC-MS/MS, we uncover factors and complexes, including P53 and ß-catenin, by which SET regulates lineage specification. Knockdown for P53 in SET-knockout (KO) ESCs partially rescues lineage marker misregulation during differentiation. Paradoxically, SET-KO ESCs show increased expression of several Wnt target genes despite reduced levels of active ß-catenin. Further analysis of RNA sequencing datasets hints at a co-regulatory relationship between SET and TCF proteins, terminal effectors of Wnt signaling. Overall, we discover a role for both P53 and ß-catenin in SET-regulated early differentiation and raise a hypothesis for SET function at the ß-catenin-TCF regulatory axis.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Chaperonas de Histonas/genética , Ratones , Células Madre Embrionarias de Ratones/citología , Proteína p53 Supresora de Tumor/genética , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA