Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Intervalo de año de publicación
1.
Blood Cells Mol Dis ; 104: 102799, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839173

RESUMEN

Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.


Asunto(s)
Antineoplásicos , Aurora Quinasa A , Humanos , Aurora Quinasa A/metabolismo , Quinazolinas/farmacología , Organofosfatos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptores del Factor Estimulante de Colonias
2.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511073

RESUMEN

The endogenous estradiol derivative 2-Methoxyestradiol (2-ME) has shown good and wide anticancer activity but suffers from poor oral bioavailability and extensive metabolic conjugation. However, its sulfamoylated derivative, 2-methoxyestradiol-3,17-O,O-bis-sulfamate (STX140), has superior potential as a therapeutic agent, acts by disrupting microtubule polymerization, leading to cell cycle arrest and apoptosis in cancer cells and possesses much better pharmaceutical properties. This study investigated the antiproliferative and anti-invasive activities of STX140 in both SKMEL-28 naïve melanoma (SKMEL28-P) cells and resistant melanoma cells (SKMEL-28R). STX140 inhibited cell proliferation in the nanomolar range while having a less pronounced effect on human melanocytes. Additionally, STX140 induced cell cycle arrest in the G2/M phase and sub-G1, reduced migration, and clonogenic potential in monolayer models, and inhibited invasion in a 3D human skin model with melanoma cells. Furthermore, STX140 induced senescence features in melanoma and activated the senescence machinery by upregulating the expression of senescence genes and proteins related to senescence signaling. These findings suggest that STX140 may hold potential as a therapeutic agent for melanoma treatment.


Asunto(s)
Estrenos , Melanoma , Humanos , 2-Metoxiestradiol/farmacología , Estrenos/farmacología , Proliferación Celular , Melanoma/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis
3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069220

RESUMEN

Phosphatidylinositol-5-phosphate 4-kinase type 2 (PIP4K2) protein family members (PIP4K2A, PIP4K2B, and PIP4K2C) participate in the generation of PIP4,5P2, which acts as a secondary messenger in signal transduction, a substrate for metabolic processes, and has structural functions. In patients with acute myeloid leukemia (AML), high PIP4K2A and PIP4K2C levels are independent markers of a worse prognosis. Recently, our research group reported that THZ-P1-2 (PIP4K2 pan-inhibitor) exhibits anti-leukemic activity by disrupting mitochondrial homeostasis and autophagy in AML models. In the present study, we characterized the expression of PIP4K2 in the myeloid compartment of hematopoietic cells, as well as in AML cell lines and clinical samples with different genetic abnormalities. In ex vivo assays, PIP4K2 expression levels were related to sensitivity and resistance to several antileukemia drugs and highlighted the association between high PIP4K2A levels and resistance to venetoclax. The combination of THZ-P1-2 and venetoclax showed potentiating effects in reducing viability and inducing apoptosis in AML cells. A combined treatment differentially modulated multiple genes, including TAp73, BCL2, MCL1, and BCL2A1. In summary, our study identified the correlation between the expression of PIP4K2 and the response to antineoplastic agents in ex vivo assays in AML and exposed vulnerabilities that may be exploited in combined therapies, which could result in better therapeutic responses.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fosfotransferasas (Aceptor de Grupo Alcohol)/farmacología
4.
Cancer Sci ; 113(2): 597-608, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34808021

RESUMEN

Several lines of research suggest that Bcl-xL-mediated anti-apoptotic effects may contribute to the pathogenesis of myeloproliferative neoplasms driven by JAK2V617F and serve as therapeutic target. Here, we used a knock-in JAK2V617F mouse model and confirmed that Bcl-xL was overexpressed in erythroid progenitors. The myeloproliferative neoplasm (MPN)-induced phenotype in the peripheral blood by conditional knock-in of JAK2V617F was abrogated by conditional knockout of Bcl2l1, which presented anemia and thrombocytopenia independently of JAK2 mutation status. Mx1-Cre Jak2V617W/VF /Bcl2l1f/f mice presented persistent splenomegaly as a result of extramedullary hematopoiesis and pro-apoptotic stimuli in terminally differentiated erythroid progenitors. The pan-BH3 mimetic inhibitor obatoclax showed superior cytotoxicity in JAK2V617F cell models, and reduced clonogenic capacity in ex vivo assay using Vav-Cre Jak2V617F bone marrow cells. Both ruxolitinib and obatoclax significantly reduced spleen weights in a murine Jak2V617F MPN model but did not show additive effect. The tumor burden reduction was observed with either ruxolitinib or obatoclax in terminal differentiation stage neoplastic cells but not in myeloid-erythroid precursors. Therefore, disrupting the BCL2 balance is not sufficient to treat MPN at the stem cell level, but it is certainly an additional option for controlling the critical myeloid expansion of the disease.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Janus Quinasa 2/antagonistas & inhibidores , Trastornos Mieloproliferativos/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Células Precursoras Eritroides/patología , Humanos , Indoles/uso terapéutico , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratones , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Nitrilos/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico , Carga Tumoral/efectos de los fármacos , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
5.
Invest New Drugs ; 40(4): 728-737, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35477813

RESUMEN

Pancreatic cancer is one of the most lethal human neoplasms, and despite advances in the understanding of the molecular complexity involved in the development and progression of this disease, little of this new information has been translated into improvements in therapy and prognosis. Ezrin (EZR) is a protein that regulates multiple cellular functions, including cell proliferation, survival, morphogenesis, adhesion, and motility. In pancreatic cancer, EZR is highly expressed and reflects an unfavorable prognosis, whereas EZR silencing ameliorates the malignant phenotype of pancreatic cancer cells. NSC305787 was identified as a pharmacological EZR inhibitor with favorable pharmacokinetics and antineoplastic activity. Here, we endeavored to investigate the impact of EZR expression on survival outcomes and its associations with molecular and biological characteristics in The Cancer Genome Atlas pancreatic adenocarcinoma cohort. We also assessed the potential antineoplastic effects of NSC305787 in pancreatic cancer cell lines. High EZR expression was an independent predictor of worse survival outcomes. Functional genomics analysis indicated that EZR contributes to multiple cancer-related pathways, including PI3K/AKT/mTOR signaling, NOTCH signaling, estrogen-mediated signaling, and apoptosis. In pancreatic cells, NSC305787 reduced cell viability, clonal growth, and migration. Our exploratory molecular studies identified that NSC305787 modulates the expression and activation of key regulators of the cell cycle, proliferation, DNA damage, and apoptosis, favoring a tumor-suppressive molecular network. In conclusion, EZR expression is an independent prognosis marker in pancreatic cancer. Our study identifies a novel molecular axis underlying the antineoplastic activity of NSC305787 and provides insights into the development of therapeutic strategies for pancreatic cancer.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Adamantano/análogos & derivados , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteínas del Citoesqueleto , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas , Quinolinas , Neoplasias Pancreáticas
6.
Invest New Drugs ; 40(2): 438-452, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34837603

RESUMEN

Stathmin 1 (STMN1) is a microtubule-destabilizing protein highly expressed in hematological malignancies and involved in proliferation and differentiation. Although a previous study found that the PML-RARα fusion protein, which contributes to the pathophysiology of acute promyelocytic leukemia (APL), positively regulates STMN1 at the transcription and protein activity levels, little is known about the role of STMN1 in APL. In this study, we aimed to investigate the STMN1 expression levels and their associations with laboratory, clinical, and genomic data in APL patients. We also assessed the dynamics of STMN1 expression during myeloid cell differentiation and cell cycle progression, and the cellular effects of STMN1 silencing and pharmacological effects of microtubule-stabilizing drugs on APL cells. We found that STMN1 transcripts were significantly increased in samples from APL patients compared with those of healthy donors (all p < 0.05). However, this had no effect on clinical outcomes. STMN1 expression was associated with proliferation- and metabolism-related gene signatures in APL. Our data confirmed that STMN1 was highly expressed in early hematopoietic progenitors and reduced during cell differentiation, including the ATRA-induced granulocytic differentiation model. STMN1 phosphorylation was predominant in a pool of mitosis-enriched APL cells. In NB4 and NB4-R2 cells, STMN1 knockdown decreased autonomous cell growth (all p < 0.05) but did not impact ATRA-induced apoptosis and differentiation. Finally, treatment with paclitaxel (as a single agent or combined with ATRA) induced microtubule stabilization, resulting in mitotic catastrophe with repercussions for cell viability, even in ATRA-resistant APL cells. This study provides new insights into the STMN1 functions and microtubule dynamics in APL.


Asunto(s)
Leucemia Promielocítica Aguda , Diferenciación Celular , Proliferación Celular , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Mitosis , Proteínas de Fusión Oncogénica/genética , Paclitaxel , Estatmina/genética
7.
Invest New Drugs ; 39(4): 1139-1149, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33475938

RESUMEN

Despite the great advances in the understanding of the molecular basis of acute leukemia, very little of this knowledge has been translated into new therapies. Stathmin 1 (STMN1), a phosphoprotein that regulates microtubules dynamics, is highly expressed in acute leukemia cells and promotes cell cycle progression and proliferation. GDP366 has been described as a STMN1 and survivin inhibitor in solid tumors. This study identified structural GDP366 analogs and the cellular and molecular mechanisms underlying their suppressive effects on acute leukemia cellular models. STMN1 mRNA levels were higher in AML and ALL patients, independent of risk stratification (all p < 0.001). Cheminformatics analysis identified three structural GDP366 analogs, with AD80 more potent and effective than GSK2606414 and GW768505A. In acute leukemia cells, GDP366 and AD80 reduced cell viability and autonomous clonal growth in a dose- and/or time-dependent manner (p < 0.05) and induced apoptosis and cell cycle arrest (p < 0.05). At the molecular level, GDP366 and AD80 reduced Ki-67 (a proliferation marker) expression and S6 ribosomal protein (a PI3K/AKT/mTOR effector) phosphorylation, and induced PARP1 (an apoptosis marker) cleavage and γH2AX (a DNA damage marker) expression. GDP366 induced STMN1 phosphorylation and survivin expression, while AD80 reduced survivin and STMN1 expression. GDP366 and AD80 modulated 18 of the 84 cytoskeleton regulators-related genes. These results indicated that GDP366 and AD80 reduced the PI3K/STMN1 axis and had cytotoxic effects in acute leukemia cellular models. Our findings further highlight STMN1-mediated signaling as a putative anticancer target for acute leukemia.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adenina/administración & dosificación , Adenina/análogos & derivados , Adenina/farmacología , Antineoplásicos/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Humanos , Indoles/administración & dosificación , Indoles/farmacología , Células Jurkat , Leucemia Mieloide Aguda/patología , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/metabolismo , Estatmina/genética , Factores de Tiempo , Células U937
8.
Invest New Drugs ; 38(3): 899-908, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31441020

RESUMEN

Adrenocortical carcinoma (ACC) is an aggressive endocrine cancer with few molecular predictors of malignancy and survival, especially in paediatric patients. Stathmin 1 (STMN1) regulates microtubule dynamics and has been involved in the malignant phenotype of cancer cells. Recently, it was reported that STMN1 is highly expressed in ACC patients, and STMN1 silencing reduces the clonogenicity and migration of ACC cell lines. However, the prognostic significance of STMN1 and its therapeutic potential remain undefined in ACC. In the present study, STMN1 mRNA levels were significantly higher (p < 0.05) in ACC patients, especially in an advanced stage, and correlated with BUB1B and PINK1 expression, the prognostic-related genes in ACC. In paediatric tumours, high STMN1 expression was observed in both adrenocortical carcinoma and adrenocortical adenoma patients. Among the adult malignant tumours, STMN1 level was an independent predictor of survival outcomes (overall survival: hazard ratio = 6.08, p = 0.002; disease-free survival: hazard ratio = 4.65, p < 0.0001). Paclitaxel, a microtubule-stabilizing drug, reduces the activation of STMN1 and significantly decreases cell migration and invasion in ACC cell lines and ACC cells from secondary cell culture (all p < 0.0001). In summary, STMN1 expression may be of great value to clinical and pathological findings in therapeutic trials and deserves future studies in ACC.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/mortalidad , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/mortalidad , Movimiento Celular/genética , Estatmina/genética , Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/patología , Adulto , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Preescolar , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Paclitaxel/uso terapéutico , Pronóstico , ARN Mensajero/genética
9.
Blood Cells Mol Dis ; 55(3): 228-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26227852

RESUMEN

PIP4K2A is a lipid kinase that phosphorylates PtdIns5P, generating PtdIns4,5P2. Recently, PIP4K2A was identified as a potential target in acute myeloid leukemia cells. The objective of the present study was to investigate the PIP4K2A expression in hematological malignancies and verify the effects of PIP4K2A silencing on proliferation and survival of leukemia cell lines. PIP4K2A was found to be a cytoplasmic and nuclear protein with reduced levels in leukemia cell lines compared to normal leukocytes. PIP4K2A mRNA levels were significantly reduced in bone marrow cells from acute lymphoid leukemia (ALL) patients compared with healthy donors and in myelodysplastic syndromes (MDS) with ≥5% compared with <5% bone marrow blasts. Low PIP4K2A expression (lowest tertile versus 2 higher tertiles) negatively impacted overall survival of MDS patients by univariate analysis. PIP4K2A silencing did not modulate cell proliferation, clonogenicity and apoptosis of HEL and Namalwa leukemia cells. In summary, we characterized the expression of PIP4K2A in a cohort of patients with hematological malignancies and we found that PIP4K2A mRNA expression is downregulated in RAEB-1/RAEB-2 MDS and ALL cells, and PIP4K2A silencing does not modulate cell survival in HEL and Namalwa leukemia cells.


Asunto(s)
Neoplasias Hematológicas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Apoptosis/genética , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Recuento de Células , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias Hematológicas/patología , Humanos , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-39261151

RESUMEN

The central role of the control of apoptosis in the pathophysiology of Philadelphia chromosome-negative myeloproliferative neoplasms has recently been reinforced in genetic and pharmacological studies. The inhibitor of apoptosis protein family has eight members and plays an important role in apoptosis, with the most studied being survivin (BIRC5) and X-linked inhibitor of apoptosis (XIAP). YM155 is a small molecule with antineoplastic potential that has been described as a suppressant of survivin and XIAP. In the present study, BIRC5 expression was significantly increased in primary myelofibrosis patients compared to healthy donors. On the other hand, XIAP expression was reduced in myeloproliferative neoplasms patients. In JAK2V617F cells, YM155 reduces cell viability and autonomous clonal growth and induces apoptosis, cell cycle arrest, and autophagy. HEL cells that show greater malignancy are more sensitive to the drug than SET2 cells. In the molecular scenario, YM155 modulates apoptosis-, cell cycle-, DNA damage- and autophagy-related genes. Protein expression analysis corroborates the observed cellular phenotype and exploratory gene expression findings. In summary, our results indicate that survivin/BIRC5 and XIAP are differently expressed in myeloproliferative neoplasms and YM155 has multiple antineoplastic effects on JAK2V617F cells suggesting that inhibitor of apoptosis proteins may be a target for pharmacological interventions in the treatment of these diseases.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38523043

RESUMEN

Multiple myeloma (MM) is a prevalent hematological malignancy with high recurrence and no definitive cure. The current study revisits the role of the IGF1/IGF1R axis in MM, introducing a novel inhibitor, NT157. The IGF1/IGF1R pathway is pivotal in MM, influencing cell survival, proliferation, and migration and impacting patient survival outcomes. NT157 targets intracellular proteins such as IRS and STAT proteins and demonstrates antineoplastic potential in hematological malignancies and solid tumors. In the present study, we assessed IGF1R signaling-related gene expression in MM patients and healthy donors, unveiling significant distinctions. MM cell lines displayed varying expression patterns of IGF1R-related proteins. A gene dependence analysis indicated the importance of targeting receptor and intracellular elements over autocrine IGF1. NT157 exhibited inhibitory effects on MM cell viability, clonal growth, cell cycle progression, and survival. Moreover, NT157 reduced IRS2 expression and STAT3, STAT5, and RPS6 activation and modulated oncogenes and tumor suppressors, fostering a tumor-suppressive molecular profile. In summary, our study demonstrates that the IGF1/IGF1R/IRS signaling axis is differentially activated in MM cells and the NT157's capacity to modulate crucial molecular targets, promoting antiproliferative effects and apoptosis in MM cells. NT157 may offer a multifaceted approach to enhance MM therapy.

12.
Toxicol In Vitro ; 99: 105856, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821378

RESUMEN

Acute leukemias present therapeutic challenges despite advances in treatments. Microtubule inhibitors have played a pivotal role in cancer therapy, inspiring exploration into novel compounds like C2E1 from the cyclopenta[b]indole class. In the present study, we investigated C2E1's potential as a therapeutic agent for acute leukemia at molecular, cellular, and genetic levels. C2E1 demonstrated tubulin depolarization activity, significantly reducing leukemia cell viability. Its impact involved multifaceted mechanisms: inducing apoptosis, arrest of cell cycle progression, and inhibition of clonogenicity and migration in leukemia cells. At a molecular level, C2E1 triggered DNA damage, antiproliferative, and apoptosis markers and altered gene expression related to cytoskeletal regulation, disrupting essential cellular processes crucial for leukemia cell survival and proliferation. These findings highlight C2E1's promise as a potential candidate for novel anti-cancer therapies. Notably, its distinct mode of action from conventional microtubule-targeting drugs suggests the potential to bypass common resistance mechanisms encountered with existing treatments. In summary, C2E1 emerges as a compelling compound with diverse effects on leukemia cells, showcasing promising antineoplastic properties. Its ability to disrupt critical cellular functions selective to leukemia cells positions it as a candidate for future therapeutic development.


Asunto(s)
Antineoplásicos , Apoptosis , Supervivencia Celular , Indoles , Leucemia , Moduladores de Tubulina , Humanos , Leucemia/tratamiento farmacológico , Moduladores de Tubulina/farmacología , Indoles/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Daño del ADN/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Microtúbulos/efectos de los fármacos
13.
Hematol Transfus Cell Ther ; 46(3): 273-282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38326180

RESUMEN

Myeloid neoplasms result from molecular alterations in hematopoietic stem cells, with acute myeloid leukemia (AML) being one of the most aggressive and with a poor prognosis. Hematopoietic cell kinase (HCK) is a proto-oncogene that encodes a protein-tyrosine kinase of the Scr family, and it is highly expressed in AML. The present study investigated HCK expression in normal hematopoietic cells across myeloid differentiation stages and myeloid neoplasm patients. Within the AML cohort, we explored the impact of HCK expression on clinical outcomes and its correlation with clinical, genetic, and laboratory characteristics. Furthermore, we evaluated the association between HCK expression and the response to antineoplastic agents using ex vivo assay data from AML patients. HCK expression is higher in differentiated subpopulations of myeloid cells. High HCK expression was observed in patients with chronic myelomonocytic leukemia, chronic myeloid leukemia, and AML. In patients with AML, high levels of HCK negatively impacted overall and disease-free survival. High HCK expression was also associated with worse molecular risk groups and white blood cell count; however, it was not an independent prognostic factor. In functional genomic analyses, high HCK expression was associated with several biological and molecular processes relevant to leukemogenesis. HCK expression was also associated with sensitivity and resistance to several drugs currently used in the clinic. In conclusion, our analysis confirmed the differential expression of HCK in myeloid neoplasms and its potential association with unfavorable molecular risks in AML. We also provide new insights into HCK biological functions, prognosis, and response to antineoplastic agents.

14.
Clinics (Sao Paulo) ; 79: 100422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38972247

RESUMEN

OBJECTIVE: Cancer genomics and transcriptomics studies have provided a large volume of data that enables to test of hypotheses based on real data from cancer patients. Ezrin (encoded by the EZR gene) is a highly expressed protein in cancer that contributes to linking the actin cytoskeleton to the cell membrane and signal transduction pathways involved in oncogenesis and disease progression. NSC305787 is a pharmacological ezrin inhibitor with potential antineoplastic effects. In the present study, the authors prospected EZR mRNA levels in a pan-cancer analysis and identified potential cancers that could benefit from anti-EZR therapies. METHODS: This study analyzed TCGA data for 32 cancer types, emphasizing cervical squamous cell carcinoma and stomach adenocarcinoma. It investigated the impact of EZR transcript levels on clinical outcomes and identified differentially expressed genes. Cell lines were treated with NSC305787, and its effects were assessed through various cellular and molecular assays. RESULTS: EZR mRNA levels are highly expressed, and their expression is associated with biologically relevant molecular processes in cervical squamous carcinoma and stomach adenocarcinoma. In cellular models of cervical and gastric cancer, NSC305787 reduces cell viability and clonal growth (p < 0.05). Molecular analyses indicate that the pharmacological inhibition of EZR induces molecular markers of cell death and DNA damage, in addition, to promoting the expression of genes associated with apoptosis and inhibiting the expression of genes related to survival and proliferation. CONCLUSION: The present findings provide promising evidence that ezrin may be a molecular target in the treatment of cervical and gastric carcinoma.


Asunto(s)
Adenocarcinoma , Proteínas del Citoesqueleto , Perfilación de la Expresión Génica , Neoplasias Gástricas , Neoplasias del Cuello Uterino , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Proteínas del Citoesqueleto/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Línea Celular Tumoral , Femenino , Adenocarcinoma/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , ARN Mensajero , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética
15.
Eur J Pharmacol ; 977: 176723, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851560

RESUMEN

Acute lymphoblastic leukemia (ALL), a complex malignancy, displays varying expression profiles of PIP4K2-related genes in adult patients. While PIP4K2A expression is elevated in ALL bone marrow cells compared to healthy bone marrow cells, PIP4K2B is downregulated, and PIP4K2C remains relatively unchanged. Despite the correlation between increased PIP4K2A expression and increased percentage of peripheral blood blasts, clinical outcomes do not strongly correlate with the expression of these genes. Here we investigated the therapeutic potential of three PIP4K2 inhibitors (THZ-P1-2, a131, and CC260) in ALL cell models. THZ-P1-2 emerges as the most effective inhibitor, inducing cell death and mitochondrial damage while reducing cell viability and metabolism significantly. Comparative analyses highlight the superior efficacy of THZ-P1-2 over a131 and CC260. Notably, THZ-P1-2 uniquely disrupts autophagic flux and inhibits the PI3K/AKT/mTOR pathway, indicating a distinct molecular mechanism. In summary, our findings elucidate the differential expression of PIP4K2-related genes in ALL and underscore the potential role of PIP4K2A in disease pathogenesis. The therapeutic promise of THZ-P1-2 in ALL treatment, along with its distinct effects on cell death mechanisms and signaling pathways, enriches our understanding of PIP4K2's involvement in ALL development and offers targeted therapy prospects.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol) , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Apoptosis/efectos de los fármacos
16.
Exp Hematol ; 137: 104254, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38871278

RESUMEN

Sickle cell anemia (SCA) is characterized by immune system activation and heightened susceptibility to infections. We hypothesized that SCA patients exhibit transcriptional alterations in B-cell-related genes, impacting their peripheral B-cell compartment and leading to dysregulated humoral immunity and increased infection susceptibility. Our objective was to conduct an in silico analysis of whole blood transcriptomes from SCA patients and healthy controls obtained from public repositories. We aimed to identify alterations in the adaptive immune system and validate these findings in our own SCA patient cohort. Bioinformatic analyses unveiled significant transcriptional alterations in B-cell signatures, developmental pathways, and signaling pathways. These results were validated in peripheral blood mononuclear cells from our SCA patient cohort and controls using real-time polymerase chain reaction and flow cytometry. Ninety genes exhibited differential expression, with 70 upregulated and 20 downregulated. Dysregulation in the B-cell compartment of SCA patients was evident, characterized by increased frequencies of immature and naive B-cells, and decreased percentages of memory B-cell subsets compared with healthy controls. Our findings highlight previously unexplored transcriptional and quantitative alterations in peripheral B-cells among SCA patients. Understanding these changes sheds light on the mechanisms contributing to the heightened infection risk in this population. Future studies should delve deeper into these molecular changes to develop targeted interventions and therapeutic strategies aimed at mitigating infection susceptibility in individuals with SCA.


Asunto(s)
Anemia de Células Falciformes , Subgrupos de Linfocitos B , Perfilación de la Expresión Génica , Transcriptoma , Humanos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/inmunología , Masculino , Femenino , Adulto , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Linfocitos B/inmunología , Linfocitos B/patología , Adolescente , Persona de Mediana Edad
17.
Cancers (Basel) ; 15(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37568682

RESUMEN

Significant advances in understanding the molecular complexity of the development and progression of pancreatic cancer have been made, but this disease is still considered one of the most lethal human cancers and needs new therapeutic options. In the present study, the antineoplastic effects of AD80, a multikinase inhibitor, were investigated in models of pancreatic cancer. AD80 reduced cell viability and clonogenicity and induced polyploidy in pancreatic cancer cells. At the molecular level, AD80 reduced RPS6 and histone H3 phosphorylation and induced γH2AX and PARP1 cleavage. Additionally, the drug markedly decreased AURKA phosphorylation and expression. In PANC-1 cells, AD80 strongly induced autophagic flux (consumption of LC3B and SQSTM1/p62). AD80 modulated 32 out of 84 autophagy-related genes and was associated with vacuole organization, macroautophagy, response to starvation, cellular response to nitrogen levels, and cellular response to extracellular stimulus. In 3D pancreatic cancer models, AD80 also effectively reduced growth independent of anchorage and cell viability. In summary, AD80 induces mitotic aberrations, DNA damage, autophagy, and apoptosis in pancreatic cancer cells. Our exploratory study establishes novel targets underlying the antineoplastic activity of the drug and provides insights into the development of therapeutic strategies for this disease.

18.
Cancers (Basel) ; 14(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36551566

RESUMEN

Despite the advances in understanding the biology of hematologic neoplasms which has resulted in the approval of new drugs, the therapeutic options are still scarce for relapsed/refractory patients. Eribulin is a unique microtubule inhibitor that is currently being used in the therapy for metastatic breast cancer and soft tissue tumors. Here, we uncover eribulin's cellular and molecular effects in a molecularly heterogeneous panel of hematologic neoplasms. Eribulin reduced cell viability and clonogenicity and promoted apoptosis and cell cycle arrest. The minimal effects of eribulin observed in the normal leukocytes suggested selectivity for malignant blood cells. In the molecular scenario, eribulin induces DNA damage and apoptosis markers. The ABCB1, ABCC1, p-AKT, p-NFκB, and NFκB levels were associated with responsiveness to eribulin in blood cancer cells, and a resistance eribulin-related target score was constructed. Combining eribulin with elacridar (a P-glycoprotein inhibitor), but not with PDTC (an NFkB inhibitor), increases eribulin-induced apoptosis in leukemia cells. In conclusion, our data indicate that eribulin leads to mitotic catastrophe and cell death in blood cancer cells. The expression and activation of MDR1, PI3K/AKT, and the NFκB-related targets may be biomarkers of the eribulin response, and the combined treatment of eribulin and elacridar may overcome drug resistance in these diseases.

19.
Sci Rep ; 12(1): 17092, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224313

RESUMEN

Combination therapies or multi-targeted drugs have been pointed out as an option to prevent the emergence of resistant clones, which could make long-term treatment more effective and translate into better clinical outcomes for cancer patients. The NT157 compound is a synthetic tyrphostin that leads to long-term inhibition of IGF1R/IRS1-2-, STAT3- and AXL-mediated signaling pathways. Given the importance of these signaling pathways for the development and progression of lung cancer, this disease becomes an interesting model for generating preclinical evidence on the cellular and molecular mechanisms underlying the antineoplastic activity of NT157. In lung cancer cells, exposure to NT157 decreased, in a dose-dependent manner, cell viability, clonogenicity, cell cycle progression and migration, and induced apoptosis (p < 0.05). In the molecular scenario, NT157 reduced expression of IRS1 and AXL and phosphorylation of p38 MAPK, AKT, and 4EBP1. Besides, NT157 decreased expression of oncogenes BCL2, CCND1, MYB, and MYC and increased genes related to cellular stress and apoptosis, JUN, BBC3, CDKN1A, CDKN1B, FOS, and EGR1 (p < 0.05), favoring a tumor-suppressive cell signaling network in the context of lung cancer. Of note, JNK was identified as a key kinase for NT157-induced IRS1 and IRS2 phosphorylation, revealing a novel axis involved in the mechanism of action of the drug. NT157 also presented potentiating effects on EGFR inhibitors in lung cancer cells. In conclusion, our preclinical findings highlight NT157 as a putative prototype of a multitarget drug that may contribute to the antineoplastic arsenal against lung cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Pirogalol/análogos & derivados , Sulfonamidas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Receptores ErbB/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , MAP Quinasa Quinasa 4/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2 , Proto-Oncogenes , Pirogalol/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Tirfostinos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
20.
Cells ; 11(3)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159195

RESUMEN

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Asunto(s)
Sirolimus , Proteína 1A de Unión a Tacrolimus , Animales , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Péptidos/farmacología , Sirolimus/farmacología , Tacrolimus , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA