Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 118(5): 552-569, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36164821

RESUMEN

Type 6 secretion systems (T6SSs) are specialized multiprotein complexes that inject protein effectors into prokaryotic and/or eukaryotic cells. We previously described the role of the T6SS of the phytopathogen Xanthomonas citri pv. citri as an anti-eukaryotic nanoweapon that confers resistance to predation by the amoeba Dictyostelium discoideum. Transcription of the X. citri T6SS genes is induced by a signaling cascade involving the Ser/Thr kinase PknS and the extracytoplasmic function sigma factor EcfK. Here, we used a strain overexpressing a phosphomimetic constitutively active version of EcfK (EcfKT51E ) to identify the EcfK regulon, which includes a previously uncharacterized transcription factor of the AraC-family (TagK), in addition to T6SS genes and genes encoding protein homeostasis factors. Functional studies demonstrated that TagK acts downstream of EcfK, binding directly to T6SS gene promoters and inducing T6SS expression in response to contact with amoeba cells. TagK controls a small regulon, consisting of the complete T6SS, its accessory genes and additional genes encoded within the T6SS cluster. We conclude that a singular regulatory circuit consisting of a transmembrane kinase (PknS), an alternative sigma factor (EcfK) and an AraC-type transcriptional regulator (TagK) promotes expression of the X. citri T6SS in response to a protozoan predator.


Asunto(s)
Dictyostelium , Sistemas de Secreción Tipo VI , Xanthomonas , Factor sigma/genética , Factor sigma/metabolismo , Factor de Transcripción de AraC/genética , Regulación Bacteriana de la Expresión Génica/genética , Dictyostelium/genética , Dictyostelium/metabolismo , Células Eucariotas , Eucariontes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Bacteriol ; 204(5): e0062421, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35446118

RESUMEN

The genus Xanthomonas includes more than 30 phytopathogenic species that infect a wide range of plants and cause severe diseases that greatly impact crop productivity. These bacteria are highly adapted to the soil and plant environment, being found in decaying material, as epiphytes, and colonizing the plant mesophyll. Signal transduction mechanisms involved in the responses of Xanthomonas to environmental changes are still poorly characterized. Xanthomonad genomes typically encode several representatives of the extracytoplasmic function σ (σECF) factors, whose physiological roles remain elusive. In this work, we functionally characterized the Xanthomonas citri pv. citri EcfL, a σECF factor homologous to members of the iron-responsive FecI-like group. We show that EcfL is not required or induced during iron starvation, despite presenting the common features of other FecI-like σECF factors. EcfL positively regulates one operon composed of three genes that encode a TonB-dependent receptor involved in cell surface signaling, an acid phosphatase, and a lectin-domain containing protein. Furthermore, we demonstrate that EcfL is required for full virulence in citrus, and its regulon is induced inside the plant mesophyll and in response to acid stress. Together, our study suggests a role for EcfL in the adaptation of X. citri to the plant environment, in this way contributing to its ability to cause citrus canker disease. IMPORTANCE The Xanthomonas genus comprises a large number of phytopathogenic species that infect a wide variety of economically important plants worldwide. Bacterial adaptation to the plant and soil environment relies on their repertoire of signal transduction pathways, including alternative sigma factors of the extracytoplasmic function family (σECF). Here, we describe a new σECF factor found in several Xanthomonas species, demonstrating its role in Xanthomonas citri virulence to citrus plants. We show that EcfL regulates a single operon containing three genes, which are also conserved in other Xanthomonas species. This study further expands our knowledge on the functions of the widespread family of σECF factors in phytopathogenic bacteria.


Asunto(s)
Citrus , Xanthomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrus/microbiología , Hierro/metabolismo , Enfermedades de las Plantas/microbiología , Factor sigma/genética , Factor sigma/metabolismo , Suelo , Virulencia/genética , Xanthomonas/metabolismo
3.
Curr Microbiol ; 76(10): 1105-1111, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31289847

RESUMEN

Xanthomonas citri pv. citri (X. citri pv. citri) is the causal agent of Asiatic citrus canker and infects economically important citrus crops. X. citri pv. citri contains one type VI secretion system (T6SS) required for resistance to predation by the soil amoeba Dictyostelium discoideum and induced by the ECF sigma factor EcfK in the presence of amoeba. In this work, we describe the analysis of T6SS gene expression during interaction with host plants. We show that T6SS genes and the cognate positive regulator ecfK are upregulated during growth in the plant surface (epiphytic) and maintain low expression levels during growth inside plant mesophyll. In addition, expression of the virulence-associated T3SS is also induced during epiphytic growth and shows a temporal induction pattern during growth inside plant leaves. The T6SS is not required for adhesion to leaf surface and biofilm formation during the first stages of plant colonization nor for killing of yeasts cells. Since the phyllosphere is colonized by eukaryotic predators of bacteria, induction of the X. citri pv. citri anti-amoeba T6SS during epiphytic growth suggests the presence of an environmental signal that triggers the resistance phenotype.


Asunto(s)
Citrus/microbiología , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología , Sistemas de Secreción Tipo VI/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Hojas de la Planta/microbiología , Factor sigma/genética , Factor sigma/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Virulencia , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
4.
Environ Microbiol ; 20(4): 1562-1575, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29488354

RESUMEN

Plant-associated bacteria of the genus Xanthomonas cause disease in a wide range of economically important crops. However, their ability to persist in the environment is still poorly understood. Predation by amoebas represents a major selective pressure to bacterial populations in the environment. In this study, we show that the X. citri type 6 secretion system (T6SS) promotes resistance to predation by the soil amoeba Dictyostelium discoideum. We found that an extracytoplasmic function (ECF) sigma factor (EcfK) is required for induction of T6SS genes during interaction with Dictyostelium. EcfK homologues are found in several environmental bacteria in association with a gene encoding a eukaryotic-like Ser/Thr kinase (pknS). Deletion of pknS causes sensitivity to amoeba predation and abolishes induction of T6SS genes. Phosphomimetic mutagenesis of EcfK identified a threonine residue (T51) that renders EcfK constitutively active in standard culture conditions. Moreover, susceptibility of ΔpknS to Dictyostelium predation can be overcome by expression of the constitutively active version EcfKT51E from a multicopy plasmid. Together, these results describe a new regulatory cascade in which PknS functions through activation of EcfK to promote T6SS expression. Our work reveals an important aspect of Xanthomonas physiology that affects its ability to persist in the environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dictyostelium/microbiología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor sigma/genética , Sistemas de Secreción Tipo VI/metabolismo , Xanthomonas/metabolismo , Cadena Alimentaria , Mutagénesis , Plásmidos/genética , Proteínas Serina-Treonina Quinasas/genética , Sistemas de Secreción Tipo VI/genética , Xanthomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA