Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Med Int ; 2024: 2856759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292207

RESUMEN

Anxiety disorders in dogs are ever-growing and represent an important concern in the veterinary behavior field. These disorders are often disregarded in veterinary clinical practice, negatively impacting the animal's and owner's quality of life. Moreover, these anxiety disorders can potentially result in the abandonment or euthanasia of dogs. Growing evidence shows that the gut microbiota is a central player in the gut-brain axis. A variety of microorganisms inhabit the intestines of dogs, which are essential in maintaining intestinal homeostasis. These microbes can impact mental health through several mechanisms, including metabolic, neural, endocrine, and immune-mediated pathways. The disruption of a balanced composition of resident commensal communities, or dysbiosis, is implicated in several pathological conditions, including mental disorders such as anxiety. Studies carried out in rodent models and humans demonstrate that the intestinal microbiota can influence mental health through these mechanisms, including anxiety disorders. Furthermore, novel therapeutic strategies using prebiotics and probiotics have been shown to ameliorate anxiety-related symptoms. However, regarding the canine veterinary behavior field, there is still a lack of insightful research on this topic. In this review, we explore the few but relevant studies performed on canine anxiety disorders. We agree that innovative bacterial therapeutical approaches for canine anxiety disorders will become a promising field of investigation and certainly pave the way for new approaches to these behavioral conditions.

2.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916029

RESUMEN

Melanoma is the deadliest form of skin cancer, primarily due to its high metastatic propensity and therapeutic resistance in advanced stages. The frequent inactivation of the p53 tumour suppressor protein in melanomagenesis may predict promising outcomes for p53 activators in melanoma therapy. Herein, we aimed to investigate the antitumor potential of the p53-activating agent SLMP53-2 against melanoma. Two- and three-dimensional cell cultures and xenograft mouse models were used to unveil the antitumor activity and the underlying molecular mechanism of SLMP53-2 in melanoma. SLMP53-2 inhibited the growth of human melanoma cells in a p53-dependent manner through induction of cell cycle arrest and apoptosis. Notably, SLMP53-2 induced p53 stabilization by disrupting the p53-MDM2 interaction, enhancing p53 transcriptional activity. It also promoted the expression of p53-regulated microRNAs (miRNAs), including miR-145 and miR-23a. Moreover, it displayed anti-invasive and antimigratory properties in melanoma cells by inhibiting the epithelial-to-mesenchymal transition (EMT), angiogenesis and extracellular lactate production. Importantly, SLMP53-2 did not induce resistance in melanoma cells. Additionally, it synergized with vemurafenib, dacarbazine and cisplatin, and resensitized vemurafenib-resistant cells. SLMP53-2 also exhibited antitumor activity in human melanoma xenograft mouse models by repressing cell proliferation and EMT while stimulating apoptosis. This work discloses the p53-activating agent SLMP53-2 which has promising therapeutic potential in advanced melanoma, either as a single agent or in combination therapy. By targeting p53, SLMP53-2 may counteract major features of melanoma aggressiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA