Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Genomics ; 53(3): 85-98, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522389

RESUMEN

Radiation therapy for head and neck cancer causes damage to the surrounding salivary glands, resulting in salivary gland hypofunction and xerostomia. Current treatments do not provide lasting restoration of salivary gland function following radiation; therefore, a new mechanistic understanding of the radiation-induced damage response is necessary for identifying therapeutic targets. The purpose of the present study was to investigate the metabolic phenotype of radiation-induced damage in parotid salivary glands by integrating transcriptomic and metabolomic data. Integrated data were then analyzed to identify significant gene-metabolite interactions. Mice received a single 5 Gy dose of targeted head and neck radiation. Parotid tissue samples were collected 5 days following treatment for RNA sequencing and metabolomics analysis. Altered metabolites and transcripts significantly converged on a specific region in the metabolic reaction network. Both integrative pathway enrichment using rank-based statistics and network analysis highlighted significantly coordinated changes in glutathione metabolism, energy metabolism (TCA cycle and thermogenesis), peroxisomal lipid metabolism, and bile acid production with radiation. Integrated changes observed in energy metabolism suggest that radiation induces a mitochondrial dysfunction phenotype. These findings validated previous pathways involved in the radiation-damage response, such as altered energy metabolism, and identified robust signatures in salivary glands, such as reduced glutathione metabolism, that may be driving salivary gland dysfunction.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Metabolómica/métodos , Traumatismos Experimentales por Radiación/genética , Glándulas Salivales/efectos de la radiación , Animales , Redes Reguladoras de Genes/efectos de la radiación , Humanos , Ratones , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/efectos de la radiación , Traumatismos Experimentales por Radiación/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/fisiopatología , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Xerostomía/genética , Xerostomía/metabolismo , Xerostomía/fisiopatología
2.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R287-R296, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296281

RESUMEN

Prostaglandins are critical lipid mediators involved in the wound healing response, with prostaglandin E2 (PGE2) being the most complex and exhibiting the most diverse physiological outputs. PGE2 signals via four G protein-coupled receptors, termed EP-receptors 1-4 that induce distinct signaling pathways upon activation and lead to an array of different outputs. Recent studies examining the role of PGE2 and EP receptor signaling in wound healing following various forms of tissue damage are discussed in this review.


Asunto(s)
Dinoprostona/metabolismo , Receptores de Prostaglandina E/metabolismo , Cicatrización de Heridas , Humanos , Masculino , Transducción de Señal
3.
Int J Mol Sci ; 21(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392784

RESUMEN

As an essential nutrient, manganese is required for the regulation of numerous cellular processes, including cell growth, neuronal health, immune cell function, and antioxidant defense. However, excess manganese in the body is toxic and produces symptoms of neurological and behavioral defects, clinically known as manganism. Therefore, manganese balance needs to be tightly controlled. In the past eight years, mutations of genes encoding metal transporters ZIP8 (SLC39A8), ZIP14 (SLC39A14), and ZnT10 (SLC30A10) have been identified to cause dysregulated manganese homeostasis in humans, highlighting the critical roles of these genes in manganese metabolism. This review focuses on the most recent advances in the understanding of physiological functions of these three identified manganese transporters and summarizes the molecular mechanisms underlying how the loss of functions in these genes leads to impaired manganese homeostasis and human diseases.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Homeostasis , Humanos , Absorción Intestinal , Manganeso/deficiencia , Intoxicación por Manganeso/genética , Mutación
4.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R687-R696, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30892913

RESUMEN

Head and neck cancer treatments typically involve a combination of surgery and radiotherapy, often leading to collateral damage to nearby tissues causing unwanted side effects. Radiation damage to salivary glands frequently leads to irreversible dysfunction by poorly understood mechanisms. The P2X7 receptor (P2X7R) is a ligand-gated ion channel activated by extracellular ATP released from damaged cells as "danger signals." P2X7R activation initiates apoptosis and is involved in numerous inflammatory disorders. In this study, we utilized P2X7R knockout (P2X7R-/-) mice to determine the role of the receptor in radiation-induced salivary gland damage. Results indicate a dose-dependent increase in γ-radiation-induced ATP release from primary parotid gland cells of wild-type but not P2X7R-/- mice. Despite these differences, apoptosis levels are similar in parotid glands of wild-type and P2X7R-/- mice 24-72 h after radiation. However, γ-radiation caused elevated prostaglandin E2 (PGE2) release from primary parotid cells of wild-type but not P2X7R-/- mice. To attempt to uncover the mechanism underlying differential PGE2 release, we evaluated the expression and activities of cyclooxygenase and PGE synthase isoforms. There were no consistent trends in these mediators following radiation that could explain the reduction in PGE2 release in P2X7R-/- mice. Irradiated P2X7R-/- mice have stimulated salivary flow rates similar to unirradiated controls, whereas irradiated wild-type mice have significantly decreased salivary flow rates compared with unirradiated controls. Notably, treatment with the P2X7R antagonist A438079 preserves stimulated salivary flow rates in wild-type mice following γ-radiation. These data suggest that P2X7R antagonism is a promising approach for preventing γ-radiation-induced hyposalivation.


Asunto(s)
Rayos gamma , Glándula Parótida/metabolismo , Traumatismos por Radiación/prevención & control , Receptores Purinérgicos P2X7/deficiencia , Salivación , Xerostomía/prevención & control , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Ratones Endogámicos C57BL , Ratones Noqueados , Glándula Parótida/efectos de los fármacos , Glándula Parótida/fisiopatología , Prostaglandina-E Sintasas/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Traumatismos por Radiación/genética , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/fisiopatología , Receptores Purinérgicos P2X7/efectos de los fármacos , Receptores Purinérgicos P2X7/genética , Salivación/efectos de los fármacos , Xerostomía/genética , Xerostomía/metabolismo , Xerostomía/fisiopatología
5.
J Biol Chem ; 292(40): 16626-16637, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28798231

RESUMEN

Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1ß and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1ß, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1ß release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1ß release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.


Asunto(s)
Células Epiteliales/metabolismo , Interleucina-1beta/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Receptores Purinérgicos P2X7/metabolismo , Síndrome de Sjögren/metabolismo , Glándula Submandibular/metabolismo , Tetrazoles/farmacología , Animales , Antígenos CD28/genética , Antígenos CD28/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/patología , Inflamasomas , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Receptores Purinérgicos P2X7/genética , Síndrome de Sjögren/genética , Síndrome de Sjögren/patología , Sodio/metabolismo , Glándula Submandibular/patología
6.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R656-R667, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897817

RESUMEN

Xerostomia and hyposalivation are debilitating side effects for patients treated with ionizing radiation for head and neck cancer. Despite technological advances, collateral damage to the salivary glands remains a significant problem for patients and severely diminishes their quality of life. During the wound healing process, restoration of junctional contacts is necessary to maintain polarity, structural integrity, and orientation cues for secretion. However, little is known about whether these structural molecules are impacted following radiation damage and more importantly, during tissue restoration. We evaluated changes in adherens junctions and cytoskeletal regulators in an injury model where mice were irradiated with 5 Gy and a restoration model where mice injected postradiation with insulin-like growth factor 1 (IGF1) are capable of restoring salivary function. Using coimmunoprecipitation, there is a decrease in epithelial (E)-cadherin bound to ß-catenin following damage that is restored to untreated levels with IGF1. Via its adaptor proteins, ß-catenin links the cadherins to the cytoskeleton and part of this regulation is mediated through Rho-associated coiled-coil containing kinase (ROCK) signaling. In our radiation model, filamentous (F)-actin organization is fragmented, and there is an induction of ROCK activity. However, a ROCK inhibitor, Y-27632, prevents E-cadherin/ß-catenin dissociation following radiation treatment. These findings illustrate that radiation induces a ROCK-dependent disruption of the cadherin-catenin complex and alters F-actin organization at stages of damage when hyposalivation is observed. Understanding the regulation of these components will be critical in the discovery of therapeutics that have the potential to restore function in polarized epithelium.


Asunto(s)
Citoesqueleto de Actina/efectos de la radiación , Uniones Adherentes/efectos de la radiación , Glándula Parótida/efectos de la radiación , Traumatismos por Radiación/patología , Xerostomía/patología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Uniones Adherentes/patología , Animales , Cadherinas/metabolismo , Femenino , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Ratones , Glándula Parótida/efectos de los fármacos , Glándula Parótida/metabolismo , Glándula Parótida/patología , Unión Proteica , Dosis de Radiación , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/fisiopatología , Recuperación de la Función , Salivación/efectos de los fármacos , Salivación/efectos de la radiación , Xerostomía/tratamiento farmacológico , Xerostomía/metabolismo , Xerostomía/fisiopatología , beta Catenina/metabolismo , Quinasas Asociadas a rho/metabolismo
7.
Sci Rep ; 14(1): 845, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191641

RESUMEN

Salivary glands are indirectly damaged during radiotherapy for head and neck cancer, resulting in acute and chronic hyposalivation. Current treatments for radiation-induced hyposalivation do not permanently restore function to the gland; therefore, more mechanistic understanding of the damage response is needed to identify therapeutic targets for lasting restoration. Energy metabolism reprogramming has been observed in cancer and wound healing models to provide necessary fuel for cell proliferation; however, there is limited understanding of alterations in energy metabolism reprogramming in tissues that fail to heal. We measured extracellular acidification and oxygen consumption rates, assessed mitochondrial DNA copy number, and tested fuel dependency of irradiated primary salivary acinar cells. Radiation treatment leads to increases in glycolytic flux, oxidative phosphorylation, and ATP production rate at acute and intermediate time points. In contrast, at chronic radiation time points there is a significant decrease in glycolytic flux, oxidative phosphorylation, and ATP production rate. Irradiated salivary glands exhibit significant decreases in spare respiratory capacity and increases in mitochondrial DNA copy number at days 5 and 30 post-treatment, suggesting a mitochondrial dysfunction phenotype. These results elucidate kinetic changes in energy metabolism reprogramming of irradiated salivary glands that may underscore the chronic loss of function phenotype.


Asunto(s)
Enfermedades Mitocondriales , Xerostomía , Humanos , Metabolismo Energético , Glándulas Salivales , ADN Mitocondrial/genética , Adenosina Trifosfato
8.
PLoS One ; 19(3): e0297387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38470874

RESUMEN

Head and neck cancer treatment often consists of surgical resection of the tumor followed by ionizing radiation (IR), which can damage surrounding tissues and cause adverse side effects. The underlying mechanisms of radiation-induced salivary gland dysfunction are not fully understood, and treatment options are scarce and ineffective. The wound healing process is a necessary response to tissue injury, and broadly consists of inflammatory, proliferative, and redifferentiation phases with immune cells playing key roles in all three phases. In this study, select immune cells were phenotyped and quantified, and certain cytokine and chemokine concentrations were measured in mouse parotid glands after IR. Further, we used a model where glandular function is restored to assess the immune phenotype in a regenerative response. These data suggest that irradiated parotid tissue does not progress through a typical inflammatory response observed in wounds that heal. Specifically, total immune cells (CD45+) decrease at days 2 and 5 following IR, macrophages (F4/80+CD11b+) decrease at day 2 and 5 and increase at day 30, while neutrophils (Ly6G+CD11b+) significantly increase at day 30 following IR. Additionally, radiation treatment reduces CD3- cells at all time points, significantly increases CD3+/CD4+CD8+ double positive cells, and significantly reduces CD3+/CD4-CD8- double negative cells at day 30 after IR. Previous data indicate that post-IR treatment with IGF-1 restores salivary gland function at day 30, and IGF-1 injections attenuate the increase in macrophages, neutrophils, and CD4+CD8+ T cells observed at day 30 following IR. Taken together, these data indicate that parotid salivary tissue exhibits a dysregulated immune response following radiation treatment which may contribute to chronic loss of function phenotype in head and neck cancer survivors.


Asunto(s)
Neoplasias de Cabeza y Cuello , Glándula Parótida , Ratones , Animales , Glándula Parótida/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina , Glándulas Salivales , Inmunidad
9.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38077038

RESUMEN

Salivary glands are indirectly damaged during radiotherapy for head and neck cancer, resulting in acute and chronic hyposalivation. Current treatments for radiation-induced hyposalivation do not permanently restore function to the gland; therefore, more mechanistic understanding of the damage response is needed to identify therapeutic targets for lasting restoration. Energy metabolism reprogramming has been observed in cancer and wound healing models to provide necessary fuel for cell proliferation; however, there is limited understanding of alterations in energy metabolism reprogramming in tissues that fail to heal. We measured extracellular acidification and oxygen consumption rates, assessed mitochondrial DNA copy number, and tested fuel dependency of irradiated primary salivary acinar cells. Radiation treatment leads to increases in glycolytic flux, oxidative phosphorylation, and ATP production rate at acute and intermediate time points. In contrast, at chronic radiation time points there is a significant decrease in glycolytic flux, oxidative phosphorylation, and ATP production rate. Irradiated salivary glands exhibit significant decreases in spare respiratory capacity and increases in mitochondrial DNA copy number at days 5 and 30 post-treatment, suggesting a mitochondrial dysfunction phenotype. These results elucidate kinetic changes in energy metabolism reprogramming of irradiated salivary glands that may underscore the chronic loss of function phenotype.

10.
iScience ; 26(5): 106660, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168562

RESUMEN

Understanding the transcriptional landscape that results in chronic salivary hypofunction after irradiation will help identify injury mechanisms and develop regenerative therapies. We present scRNA-seq analysis from control and irradiated murine parotid glands collected 10 months after irradiation. We identify a population of secretory cells defined by specific expression of Etv1, which may be an acinar cell precursor. Acinar and Etv1+ secretory express Ntrk2 and Erbb3, respectively while the ligands for these receptors are expressed in myoepithelial and stromal cells. Furthermore, our data suggests that secretory cells and CD4+CD8+T-cells are the most transcriptionally affected during chronic injury with radiation, suggesting active immune involvement. Lastly, evaluation of cell-cell communication networks predicts that neurotrophin, neuregulin, ECM, and immune signaling are dysregulated after irradiation, and thus may play a role in the lack of repair. This resource will be helpful to understand cell-specific pathways that may be targeted to repair chronic damage in irradiated glands.

11.
PLoS One ; 18(11): e0294355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37983277

RESUMEN

Salivary gland hypofunction is an adverse side effect associated with radiotherapy for head and neck cancer patients. This study delineated metabolic changes at acute, intermediate, and chronic radiation damage response stages in mouse salivary glands following a single 5 Gy dose. Ultra-high performance liquid chromatography-mass spectrometry was performed on parotid salivary gland tissue collected at 3, 14, and 30 days following radiation (IR). Pathway enrichment analysis, network analysis based on metabolite structural similarity, and network analysis based on metabolite abundance correlations were used to incorporate both metabolite levels and structural annotation. The greatest number of enriched pathways are observed at 3 days and the lowest at 30 days following radiation. Amino acid metabolism pathways, glutathione metabolism, and central carbon metabolism in cancer are enriched at all radiation time points across different analytical methods. This study suggests that glutathione and central carbon metabolism in cancer may be important pathways in the unresolved effect of radiation treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Xerostomía , Animales , Ratones , Humanos , Glándulas Salivales/metabolismo , Glándula Parótida/efectos de la radiación , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/metabolismo , Carbono/metabolismo , Glutatión/metabolismo , Xerostomía/metabolismo
12.
Front Bioeng Biotechnol ; 9: 697671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381764

RESUMEN

Annually, >600,000 new cases of head and neck cancer (HNC) are diagnosed worldwide with primary treatment being surgery and radiotherapy. During ionizing radiation (IR) treatment of HNC, healthy salivary glands are collaterally damaged, leading to loss of function that severely diminishes the quality of life for patients due to increased health complications, including oral infections and sores, cavities, and malnutrition, among others. Therapies for salivary hypofunction are ineffective and largely palliative, indicating a need for further research to uncover effective approaches to prevent or restore loss of salivary gland function following radiotherapy. Previous work in our lab implicated prostaglandin E2 (PGE2) as an inflammatory mediator whose release from radiation-exposed cells promotes salivary gland damage and loss of function. Deletion of the P2X7 purinergic receptor for extracellular ATP reduces PGE2 secretion in irradiated primary parotid gland cells, and salivary gland function is enhanced in irradiated P2X7R-/- mice compared to wild-type mice. However, the role of PGE2 signaling in irradiated salivary glands is unclear and understanding the mechanism of PGE2 action is a goal of this study. Results show that treatment of irradiated mice with the non-steroidal anti-inflammatory drug (NSAID) indomethacin, which reduces PGE2 production via inhibition of cyclooxygenase-1 (COX-1), improves salivary gland function compared to irradiated vehicle-treated mice. To define the signaling pathway whereby PGE2 induces salivary gland dysfunction, primary parotid gland cells treated with PGE2 have increased c-Jun N-terminal Kinase (JNK) activation and cell proliferation and reduced amylase levels and store-operated calcium entry (SOCE). The in vivo effects of blocking PGE2 production were also examined and irradiated mice receiving indomethacin injections have reduced JNK activity at 8 days post-irradiation and reduced proliferation and increased amylase levels at day 30, as compared to irradiated mice without indomethacin. Combined, these data suggest a mechanism whereby irradiation-induced PGE2 signaling to JNK blocks critical steps in saliva secretion manifested by a decrease in the quality (diminished amylase) and quantity (loss of calcium channel activity) of saliva, that can be restored with indomethacin. These findings encourage further attempts evaluating indomethacin as a viable therapeutic option to prevent damage to salivary glands caused by irradiation of HNC in humans.

13.
BMC Cancer ; 10: 417, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20698985

RESUMEN

BACKGROUND: Radiotherapy for head and neck cancer results in severe and chronic salivary gland dysfunction in most individuals. This results in significant side effects including xerostomia, dysphagia, and malnutrition which are linked to significant reductions in patients' quality of life. Currently there are few xerostomia treatment approaches that provide long-term results without significant side effects. To address this problem we investigated the potential for post-therapeutic IGF-1 to reverse radiation-induced salivary gland dysfunction. METHODS: FVB mice were treated with targeted head and neck radiation and significant reductions in salivary function were confirmed 3 days after treatment. On days 4-8 after radiation, one group of mice was injected intravenously with IGF-1 while a second group served as a vehicle control. Stimulated salivary flow rates were evaluated on days 30, 60, and 90 and histological analysis was performed on days 9, 30, 60, and 90. RESULTS: Irradiated animals receiving vehicle injections have 40-50% reductions in stimulated salivary flow rates throughout the entire time course. Mice receiving injections of IGF-1 have improved stimulated salivary flow rates 30 days after treatment. By days 60-90, IGF-1 injected mice have restored salivary flow rates to unirradiated control mice levels. Parotid tissue sections were stained for amylase as an indicator of functioning acinar cells and significant reductions in total amylase area are detected in irradiated animals compared to unirradiated groups on all days. Post-therapeutic injections of IGF-1 results in increased amylase-positive acinar cell area and improved amylase secretion. Irradiated mice receiving IGF-1 show similar proliferation indices as untreated mice suggesting a return to tissue homeostasis. CONCLUSIONS: Post-therapeutic IGF-1 treatment restores salivary gland function potentially through normalization of cell proliferation and improved expression of amylase. These findings could aid in the rational design of therapy protocols or drugs for the treatment of radiation-induced salivary gland dysfunction in patients who have completed their anti-cancer therapies.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Traumatismos Experimentales por Radiación/prevención & control , Glándulas Salivales/efectos de los fármacos , Glándulas Salivales/efectos de la radiación , Xerostomía/prevención & control , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Femenino , Rayos gamma , Neoplasias de Cabeza y Cuello/patología , Ratones , Pronóstico , Traumatismos Experimentales por Radiación/patología , Glándulas Salivales/patología , Xerostomía/etiología
14.
BMC Cancer ; 10: 282, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20540768

RESUMEN

BACKGROUND: The alkylating agent dacarbazine (DTIC) has been used in the treatment of melanoma for decades, but when used as a monotherapy for cancer only moderate response rates are achieved. Recently, the clinical use of temozolomide (TMZ) has become the more commonly used analog of DTIC-related oral agents because of its greater bioavailability and ability to cross the blood brain barrier. The response rates achieved by TMZ are also unsatisfactory, so there is great interest in identifying compounds that could be used in combination therapy. We have previously demonstrated that the bioflavonoid quercetin (Qct) promoted a p53-mediated response and sensitized melanoma to DTIC. Here we demonstrate that Qct also sensitizes cells to TMZ and propose a mechanism that involves the modulation of a truncated p53 family member, deltaNp73. METHODS: DB-1 melanoma (p53 wildtype), and SK Mel 28 (p53 mutant) cell lines were treated with TMZ (400 microM) for 48 hrs followed by Qct (75 microM) for 24 hrs. Cell death was determined by Annexin V-FITC staining and immunocytochemical analysis was carried out to determine protein translocation. RESULTS: After treatment with TMZ, DB-1 cells demonstrated increased phosphorylation of ataxia telangiectasia mutated (ATM) and p53. However, the cells were resistant to TMZ-induced apoptosis and the resistance was associated with an increase in nuclear localization of deltaNp73. Qct treatment in combination with TMZ abolished drug insensitivity and caused a more than additive induction of apoptosis compared to either treatment alone. Treatment with Qct, caused redistribution of deltaNp73 into the cytoplasm and nucleus, which has been associated with increased p53 transcriptional activity. Knockdown of deltaNp73 restored PARP cleavage in the TMZ treated cells, confirming its anti-apoptotic role. The response to treatment was predominantly p53 mediated as the p53 mutant SK Mel 28 cells showed no significant enhancement of apoptosis. CONCLUSION: This study demonstrates that Qct can sensitize cells to TMZ and that the mechanisms of sensitization involve modulation of p53 family members.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/metabolismo , Proteínas Nucleares/metabolismo , Quercetina/farmacología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN/genética , Dacarbazina/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Melaninas/biosíntesis , Melanoma/genética , Melanoma/patología , Mutación , Proteínas Nucleares/genética , Fosforilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Interferencia de ARN , Temozolomida , Factores de Tiempo , Proteína Tumoral p73 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
15.
PLoS One ; 15(11): e0232921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151927

RESUMEN

Radiotherapy plays a major role in the curative treatment of head and neck cancer, either as a single modality therapy, or in combination with surgery or chemotherapy, or both. Despite advances to limit radiation-induced side-effects, the major salivary glands are often affected. This frequently leads to hyposalivation which causes an increased risk for xerostomia, dental caries, mucositis, and malnutrition culminating in a significant impact on patients' quality of life. Previous research demonstrated that loss of salivary function is associated with a decrease in polarity regulators and an increase in nuclear Yap localization in a putative stem and progenitor cell (SPC) population. Yap activation has been shown to be essential for regeneration in intestinal injury models; however, the highest levels of nuclear Yap are observed in irradiated salivary SPCs that do not regenerate the gland. Thus, elucidating the inputs that regulate nuclear Yap localization and determining the role that Yap plays within the entire tissue following radiation damage and during regeneration is critical. In this study, we demonstrate that radiation treatment increases nuclear Yap localization in acinar cells and Yap-regulated genes in parotid salivary tissues. Conversely, administration of insulin-like growth factor 1 (IGF1), known to restore salivary function in mouse models, reduces nuclear Yap localization and Yap transcriptional targets to levels similar to untreated tissues. Activation of Rho-associated protein kinase (ROCK) using calpeptin results in increased Yap-regulated genes in primary acinar cells while inhibition of ROCK activity (Y-27632) leads to decreased Yap transcriptional targets. These results suggest that Yap activity is dependent on ROCK activity and provides new mechanistic insights into the regulation of radiation-induced hyposalivation.


Asunto(s)
Glándula Parótida/metabolismo , Glándulas Salivales/metabolismo , Quinasas Asociadas a rho/metabolismo , Células Acinares/metabolismo , Células Acinares/efectos de la radiación , Animales , Células Cultivadas , Caries Dental/metabolismo , Dipéptidos/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/radioterapia , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Glándula Parótida/efectos de la radiación , Traumatismos por Radiación/metabolismo , Glándulas Salivales/efectos de la radiación , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de la radiación , Xerostomía/metabolismo
16.
J Clin Med ; 9(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353023

RESUMEN

Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.

17.
Front Pharmacol ; 11: 222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231563

RESUMEN

Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.

18.
Mol Cell Biol ; 26(23): 8840-56, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16982679

RESUMEN

Chronic damage to the salivary glands is a common side effect following head and neck irradiation. It is hypothesized that irreversible damage to the salivary glands occurs immediately after radiation; however, previous studies with rat models have not shown a causal role for apoptosis in radiation-induced injury. We report that etoposide and gamma irradiation induce apoptosis of salivary acinar cells from FVB control mice in vitro and in vivo; however, apoptosis is reduced in transgenic mice expressing a constitutively activated mutant of Akt1 (myr-Akt1). Expression of myr-Akt1 in the salivary glands results in a significant reduction in phosphorylation of p53 at serine(18), total p53 protein accumulation, and p21(WAF1) or Bax mRNA following etoposide or gamma irradiation of primary salivary acinar cells. The reduced level of p53 protein in myr-Akt1 salivary glands corresponds with an increase in MDM2 phosphorylation in vivo, suggesting that the Akt/MDM2/p53 pathway is responsible for suppression of apoptosis. Dominant-negative Akt blocked phosphorylation of MDM2 in salivary acinar cells from myr-Akt1 transgenic mice. Reduction of MDM2 levels in myr-Akt1 primary salivary acinar cells with small interfering RNA increases the levels of p53 protein and renders these cells susceptible to etoposide-induced apoptosis in spite of the presence of activated Akt1. These results indicate that MDM2 is a critical substrate of activated Akt1 in the suppression of p53-dependent apoptosis in vivo.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Glándulas Salivales/citología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Etopósido/farmacología , Femenino , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Rayos gamma , Ratones , Ratones Transgénicos , Transgenes
19.
PLoS One ; 14(7): e0219572, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31287841

RESUMEN

Radiotherapy is a common treatment option for head and neck cancer patients; however, the surrounding healthy salivary glands are often incidentally irradiated during the process. As a result, patients often experience persistent xerostomia and hyposalivation, which deceases their quality of life. Clinically, there is currently no standard of care available to restore salivary function. Repair of epithelial wounds involves cellular proliferation and establishment of polarity in order to regenerate the tissue. This process is partially mediated by protein kinase C zeta (PKCζ), an apical polarity regulator; however, its role following radiation damage is not completely understood. Using an in vivo radiation model, we show a significant decrease in active PKCζ in irradiated murine parotid glands, which correlates with increased proliferation that is sustained through 30 days post-irradiation. Additionally, salivary glands in PKCζ null mice show increased basal proliferation which radiation treatment did not further potentiate. Radiation damage also activates Jun N-terminal kinase (JNK), a proliferation-inducing mitogen-activated protein kinase normally inhibited by PKCζ. In both a PKCζ null mouse model and in primary salivary gland cell cultures treated with a PKCζ inhibitor, there was increased JNK activity and production of downstream proliferative transcripts. Collectively, these findings provide a potential molecular link by which PKCζ suppression following radiation damage promotes JNK activation and radiation-induced compensatory proliferation in the salivary gland.


Asunto(s)
MAP Quinasa Quinasa 4/metabolismo , Glándula Parótida/metabolismo , Glándula Parótida/efectos de la radiación , Proteína Quinasa C-epsilon/metabolismo , Transducción de Señal/efectos de la radiación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antracenos/farmacología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de la radiación , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Unión Proteica , Radiación Ionizante , Radioterapia/efectos adversos , Transducción de Señal/efectos de los fármacos
20.
J Natl Cancer Inst Monogr ; 2019(53)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31425600

RESUMEN

BACKGROUND: The most manifest long-term consequences of radiation therapy in the head and neck cancer patient are salivary gland hypofunction and a sensation of oral dryness (xerostomia). METHODS: This critical review addresses the consequences of radiation injury to salivary gland tissue, the clinical management of salivary gland hypofunction and xerostomia, and current and potential strategies to prevent or reduce radiation injury to salivary gland tissue or restore the function of radiation-injured salivary gland tissue. RESULTS: Salivary gland hypofunction and xerostomia have severe implications for oral functioning, maintenance of oral and general health, and quality of life. Significant progress has been made to spare salivary gland function chiefly due to advances in radiation techniques. Other strategies have also been developed, e.g., radioprotectors, identification and preservation/expansion of salivary stem cells by stimulation with cholinergic muscarinic agonists, and application of new lubricating or stimulatory agents, surgical transfer of submandibular glands, and acupuncture. CONCLUSION: Many advances to manage salivary gland hypofunction and xerostomia induced by radiation therapy still only offer partial protection since they are often of short duration, lack the protective effects of saliva, or potentially have significant adverse effects. Intensity-modulated radiation therapy (IMRT), and its next step, proton therapy, have the greatest potential as a management strategy for permanently preserving salivary gland function in head and neck cancer patients.Presently, gene transfer to supplement fluid formation and stem cell transfer to increase the regenerative potential in radiation-damaged salivary glands are promising approaches for regaining function and/or regeneration of radiation-damaged salivary gland tissue.


Asunto(s)
Neoplasias de Cabeza y Cuello/complicaciones , Radioterapia/efectos adversos , Enfermedades de las Glándulas Salivales/diagnóstico , Enfermedades de las Glándulas Salivales/etiología , Xerostomía/diagnóstico , Xerostomía/etiología , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Neoplasias de Cabeza y Cuello/terapia , Humanos , Radioterapia/métodos , Investigación , Enfermedades de las Glándulas Salivales/terapia , Xerostomía/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA