Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2305921, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342674

RESUMEN

Silicon has gained significant attention as a lithium-ion battery anode material due to its high theoretical capacity compared to conventional graphite. Unfortunately, silicon anodes suffer from poor cycling performance caused by their extreme volume change during lithiation and de-lithiation. Compositing silicon particles with 2D carbon materials, such as graphene, can help mitigate this problem. However, an unaddressed challenge remains: a simple, inexpensive synthesis of Si/graphene composites. Here, a one-step laser-scribing method is proposed as a straightforward, rapid (≈3 min), scalable, and less-energy-consuming (≈5 W for a few minutes under air) process to prepare Si/laser-scribed graphene (LSG) composites. In this research, two types of Si particles, Si nanoparticles (SiNPs) and Si microparticles (SiMPs), are used. The rate performance is improved after laser scribing: SiNP/LSG retains 827.6 mAh g-1 at 2.0 A gSi+C -1 , while SiNP/GO (before laser scribing) retains only 463.8 mAh g-1 . This can be attributed to the fast ion transport within the well-exfoliated 3D graphene network formed by laser scribing. The cyclability is also improved: SiNP/LSG retains 88.3% capacity after 100 cycles at 2.0 A gSi+C -1 , while SiNP/GO retains only 57.0%. The same trend is found for SiMPs: the SiMP/LSG shows better rate and cycling performance than SiMP/GO composites.

2.
Macromol Rapid Commun ; 45(1): e2300237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37232260

RESUMEN

Conducting polymers like polyaniline (PANI) are promising pseudocapacitive electrode materials, yet experience instability in cycling performance. Since polymers often degrade into oligomers, short chain length anilines have been developed to improve the cycling stability of PANI-based supercapacitors. However, the capacitance degradation mechanisms of aniline oligomer-based materials have not been systematically investigated and are little understood. Herein, two composite electrodes based on aniline trimers (AT) and carbon nanotubes (CNTs) are studied as model systems and evaluated at both pre-cycling and post-cycling states through physicochemical and electrochemical characterizations. The favorable effect of covalent bonding between AT and CNTs is confirmed to enhance cycling stability by preventing the detachment of aniline trimer and preserving the electrode microstructure throughout the charge/discharge cycling process. In addition, higher porosity has a positive effect on electron/ion transfer and the adaptation to volumetric changes, resulting in higher conductivity and extended cycle life. This work provides insights into the mechanism of enhanced cycling stability of aniline oligomers, indicating design features for aniline oligomer electrode materials to improve their electrochemical performance.


Asunto(s)
Nanotubos de Carbono , Polímeros , Polímeros/química , Nanotubos de Carbono/química , Compuestos de Anilina/química
3.
BMC Psychiatry ; 24(1): 346, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720293

RESUMEN

BACKGROUND: Studies have revealed the effects of childhood adversity, anxiety, and negative coping on sleep quality in older adults, but few studies have focused on the association between childhood adversity and sleep quality in rural older adults and the potential mechanisms of this influence. In this study, we aim to evaluate sleep quality in rural older adults, analyze the impact of adverse early experiences on their sleep quality, and explore whether anxiety and negative coping mediate this relationship. METHODS: Data were derived from a large cross-sectional study conducted in Deyang City, China, which recruited 6,318 people aged 65 years and older. After excluding non-agricultural household registration and lack of key information, a total of 3,873 rural older adults were included in the analysis. Structural equation modelling (SEM) was used to analyze the relationship between childhood adversity and sleep quality, and the mediating role of anxiety and negative coping. RESULTS: Approximately 48.15% of rural older adults had poor sleep quality, and older adults who were women, less educated, widowed, or living alone or had chronic illnesses had poorer sleep quality. Through structural equation model fitting, the total effect value of childhood adversity on sleep quality was 0.208 (95% CI: 0.146, 0.270), with a direct effect value of 0.066 (95% CI: 0.006, 0.130), accounting for 31.73% of the total effect; the total indirect effect value was 0.142 (95% CI: 0.119, 0.170), accounting for 68.27% of the total effect. The mediating effects of childhood adversity on sleep quality through anxiety and negative coping were significant, with effect values of 0.096 (95% CI: 0.078, 0.119) and 0.024 (95% CI: 0.014, 0.037), respectively. The chain mediating effect of anxiety and negative coping between childhood adversity and sleep quality was also significant, with an effect value of 0.022 (95% CI: 0.017, 0.028). CONCLUSIONS: Anxiety and negative coping were important mediating factors for rural older adult's childhood adversity and sleep quality. This suggests that managing anxiety and negative coping in older adults may mitigate the negative effects of childhood adversity on sleep quality.


Asunto(s)
Adaptación Psicológica , Experiencias Adversas de la Infancia , Ansiedad , Población Rural , Calidad del Sueño , Humanos , Masculino , Femenino , China/epidemiología , Anciano , Población Rural/estadística & datos numéricos , Estudios Transversales , Ansiedad/psicología , Ansiedad/epidemiología , Experiencias Adversas de la Infancia/estadística & datos numéricos , Experiencias Adversas de la Infancia/psicología , Anciano de 80 o más Años
4.
Nano Lett ; 23(8): 3317-3325, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039594

RESUMEN

Long cycle life and high energy/power density are imperative to energy storage systems. Polyaniline (PANI) has shown great potential as an electrode material but is limited by poor cycling and rate performance. We present a molecular design approach of binding short-chain aniline trimers (ATs) and carbon nanotubes (CNTs) through the formation of amide covalent linkages enabled by a simple laser scribing technique. The covalently coupled AT/CNT (cc-AT/CNT) composite retains 80% of its original capacitance after 20 000 charge/discharge cycles, which readily outperforms long-chain PANI/CNT composites without covalent connections. The compact AT/CNT heterointerfaces produce fast charge/discharge kinetics and excellent rate capability. The flexible symmetric quasi-solid-state devices can be stably cycled beyond 50 000 cycles, at least 5 times longer than most PANI/CNT-based symmetric supercapacitors reported to date. This molecular design of durable conducting polymer-based electrode materials enabled by laser irradiation presents a feasible approach toward robust advanced energy storage devices.

5.
Int Wound J ; 21(1): e14338, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37555265

RESUMEN

This study aims to investigate whether the current wound classifications were valid for the treatment prognosis of subjects treated for limb-threatening diabetic foot ulcers (LTDFU). A total of 1548 patients with LTDFU and infection were studied, with wounds recorded using the Wagner, Texas, PEDIS and WIfI classifications while major lower extremity amputations (LEAs) or in-hospital mortality incidences were defined as poor outcomes. Among them, 153 (9.9%) patients received major LEAs and 38 (2.5%) patients died. After adjustments, the Wagner classification and Texas stage as well as clinical factors such as comorbidity with major adverse cardiac events (MACE), being under dialysis and having serum levels of C-reactive protein (CRP) and albumin were independent factors for prognosis. For patients without dialysis, Wagner and Texas stage stood out independently for prognosis. For patients on dialysis, only levels of CRP (odds ratio [OR] = 2.2 in Wagner, OR = 2.0 in WIfI, OR = 2.2 in Texas, OR = 2.3 in PEDIS) and albumin (OR = 0.4 in four classifications) were valid predictors. The Wagner system and Texas stage were valid for predicting prognosis in treatment for LTDFUs, suggesting a role of vascular perfusion. MACE history, levels of CRP and albumin level should assist in prediction; more significantly, only levels of CRP and albumin appeared valid for those subjects undergoing dialysis.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/cirugía , Factores de Riesgo , Cicatrización de Heridas , Pronóstico , Extremidad Inferior , Recuperación del Miembro/efectos adversos , Albúminas , Estudios Retrospectivos , Isquemia/terapia , Resultado del Tratamiento
6.
J Cell Physiol ; 238(5): 992-1005, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852589

RESUMEN

Obesity is a well-known risk factor for breast cancer formation and is associated with elevated mortality and a poor prognosis. An obesity-mediated inflammatory microenvironment is conducive to the malignant progression of tumors. However, the detailed molecular mechanism is still needed to be clarified. Herein, we identified that breast cancer cells from mice with diet-induced obesity exhibited increased growth, invasiveness, and stemness capacities. A transcriptome analysis revealed that expressions of interleukin 33 (IL33) signaling pathway-related genes were elevated in obesity-associated breast cancer cells. Importantly, IL33 expression was significantly associated with the yes-associated protein (YAP) signature, and IL33 was transcriptionally regulated by YAP. Suppression of IL33 reduced tumor migration and invasion, while the addition of IL33 activated nuclear factor (NF)-κB signaling and revived tumor mobility in YAP-silenced cells. Furthermore, suppression of YAP attenuated IL33 expression which was accompanied by relief of obesity-mediated immunosuppression. Clinical analyses showed that IL33 expression was markedly associated with macrophage and regulatory T cell infiltration. These findings reveal a crucial role of the YAP/IL33 axis in promoting aggressiveness and immunosuppression of obesity-associated breast cancer progression.


Asunto(s)
Interleucina-33 , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Interleucina-33/metabolismo , FN-kappa B/metabolismo , Obesidad/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Microambiente Tumoral , Regulación hacia Arriba
7.
Anal Chem ; 95(38): 14341-14349, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37715702

RESUMEN

Reporter gene assays are essential for high-throughput analysis, such as drug screening or determining downstream signaling activation/inhibition. However, use of this technology has been hampered by the high cost of the substrate (e.g., d-Luciferin (d-Luc)) in the most common firefly luciferase (FLuc) reporter gene assay. Although alternate luciferase is available worldwide, its substrate has remained expensive, and a more affordable option is still in demand. Here, we present a membrane-tethered horseradish peroxidase (mHRP), a new reporter system composed of a cell membrane expressing HRP that can preserve its enzymatic function on the cell surface, facilitates contact with HRP substrates (e.g., ABTS and TMB), and avoids the cell lysis process and the use of the high-priced luciferase substrate. An evaluation of the light signal sensitivity of mHRP compared to FLuc showed that both had comparable signal sensitivity. We also identified an extended substrate half-life of more than 5-fold that of d-Luc. Of note, this strategy provided a more stable detection signal, and the cell lysis process is not mandatory. Furthermore, with this strategy, we decreased the total amount of time taken for analysis and increased the time of detection limit of the reporter assay. Pricing analysis showed a one-third to one twenty-eighth price drop per single test of reporter assay. Given the convenience and stability of the mHRP reporter system, we believe that our strategy is suitable for use as an alternative to the luciferase reporter assay.


Asunto(s)
Bioensayo , Perfilación de la Expresión Génica , Membranas , Membrana Celular , Peroxidasa de Rábano Silvestre , Luciferasas de Luciérnaga/genética
8.
Phys Chem Chem Phys ; 25(6): 4598-4603, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36723048

RESUMEN

The stability and degradation mechanism of phosphorescent organic light emitting diodes (OLEDs) has been an unresolved problem in the past decades. Here, we found that electron accumulation at the interface between the electron blocking layer and the emitting layer is one of the reasons for device degradation. By inserting a thin layer with a shallower LUMO level than that of the electron transporting layer between the emitting layer and the electron transporting layer, we successfully reduced the density of electrons at the interface and greatly improved the lifetime of the resulting green phosphorescent OLEDs. The half decay lifetime LT50 at the initial luminance of 1000 cd m-2 reached as high as 399 h, which is 1.7 times longer than that of the compared device without a thin layer.

9.
Phys Chem Chem Phys ; 25(39): 26878-26884, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782517

RESUMEN

Aggregation-induced delayed fluorescence (AIDF) materials have great potential in non-doped OLEDs due to their high photoluminescence (PL) quantum efficiency in film, high exciton utilization in the aggregated state and negligible efficiency roll-off at high luminance. However, their efficient mechanism in OLEDs is not yet well understood. Here, the exciton dynamics are used to investigate the electroluminescence (EL) mechanism of an AIDF emitter (4-(10H-phenoxazin-10-yl)phenyl)-(9-phenyl-9H-carbazol-3-yl)methanone (CP-BP-PXZ) in detail. It can be seen that the high efficiency and negligible efficiency roll-off in non-doped OLEDs based on CP-BP-PXZ as the emitter are ascribed to the effective reverse intersystem crossing (RISC) from high level triplet T2 to singlet S1 in the aggregated state. Furthermore, CP-BP-PXZ also exhibits excellent properties as a phosphor host due to its good AIDF properties. Thus, high-efficiency red phosphorescent OLEDs with low roll-off efficiency are successfully fabricated based on CP-BP-PXZ as the host. The maximum external quantum efficiency (EQEmax) reaches 23% and is maintained at 21% at a luminance of 1000 cd m-2.

10.
Environ Health ; 22(1): 6, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641448

RESUMEN

BACKGROUND: There are few studies on the effects of air pollutants on acute lower respiratory tract infections (ALRI) in children. Here, we investigated the relationship of fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) with the daily number of hospitalizations for ALRI in children in Sichuan Province, China, and to estimate the economic burden of disease due to exposure to air pollutants. METHODS: We collected records of 192,079 cases of childhood ALRI hospitalization between January 1, 2017 and December 31, 2018 from nine municipal/prefecture medical institutions as well as the simultaneous meteorological and air pollution data from 183 monitoring sites in Sichuan Province. A time series-generalized additive model was used to analyze exposure responses and lagged effects while assessing the economic burden caused by air pollutant exposure after controlling for long-term trends, seasonality, day of the week, and meteorological factors. RESULTS: Our single-pollutant model shows that for each 10 µg/m3 increase in air pollutant concentration (1 µg/m3 for SO2), the effect estimates of PM2.5, PM10, SO2, and NO2 for pneumonia reached their maximum at lag4, lag010, lag010, and lag07, respectively, with relative risk (RR) values of 1.0064 (95% CI, 1.0004-1.0124), 1.0168(95% CI 1.0089-1.0248), 1.0278 (95% CI 1.0157-1.0400), and 1.0378 (95% CI, 1.0072-1.0692). By contrast, the effect estimates of PM2.5, PM10, SO2, and NO2 for bronchitis all reached their maximum at lag010, with RRs of 1.0133 (95% CI 1.0025-1.0242), 1.0161(95% CI 1.0085-1.0238), 1.0135 (95% CI 1.0025-1.0247), and 1.1133(95% CI 1.0739-1.1541). In addition, children aged 5-14 years were more vulnerable to air pollutants than those aged 0-4 years (p < 0.05). According to the World Health Organization's air quality guidelines, the number of ALRI hospitalizations attributed to PM2.5, PM10, and NO2 pollution during the study period was 7551, 10,151, and 7575, respectively, while the incurring economic burden was CNY 2847.06, 3827.27, and 2855.91 million. CONCLUSION: This study shows that in Sichuan Province, elevated daily average concentrations of four air pollutants lead to increases in numbers of childhood ALRI hospitalizations and cause a serious economic burden.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infecciones del Sistema Respiratorio , Niño , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Estrés Financiero , Contaminación del Aire/análisis , Infecciones del Sistema Respiratorio/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , China/epidemiología
11.
Ecotoxicol Environ Saf ; 266: 115555, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832483

RESUMEN

Mitochondrial dysfunction was reported to be involved in the development of lung diseases including chronic obstructive pulmonary disease (COPD). However, molecular regulation underlying metabolic disorders in the airway epithelia exposed to air pollution remains unclear. In the present study, lung bronchial epithelial BEAS-2B and alveolar epithelial A549 cells were treated with diesel exhaust particles (DEPs), the primary representative of ambient particle matter. This treatment elicited cell death accompanied by induction of lipid reactive oxygen species (ROS) production and ferroptosis. Lipidomics analyses revealed that DEPs increased glycerophospholipid contents. Accordingly, DEPs upregulated expression of the electron transport chain (ETC) complex and induced mitochondrial ROS production. Mechanistically, DEP exposure downregulated the Hippo transducer transcriptional co-activator with PDZ-binding motif (TAZ), which was further identified to be crucial for the ferroptosis-associated antioxidant system, including glutathione peroxidase 4 (GPX4), the glutamate-cysteine ligase catalytic subunit (GCLC), and glutathione-disulfide reductase (GSR). Moreover, immunohistochemistry confirmed downregulation of GPX4 and upregulation of lipid peroxidation in the bronchial epithelium of COPD patients and Sprague-Dawley rats exposed to air pollution. Finally, proteomics analyses confirmed alterations of ETC-related proteins in bronchoalveolar lavage from COPD patients compared to healthy subjects. Together, our study discovered that involvement of mitochondrial redox dysregulation plays a vital role in pulmonary epithelial cell destruction after exposure to air pollution.


Asunto(s)
Ferroptosis , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Humanos , Emisiones de Vehículos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Material Particulado/metabolismo , Regulación hacia Abajo , Ratas Sprague-Dawley , Pulmón/metabolismo , Oxidación-Reducción , Células Epiteliales/metabolismo , Mitocondrias/metabolismo
12.
Nano Lett ; 22(3): 1039-1046, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35048710

RESUMEN

The interfacial properties within a composite structure of membranes play a vital role in the separation properties and application performances. Building an interlayer can facilitate the formation of a highly selective layer as well as improve the interfacial properties of the composite membrane. However, it is difficult for a nanomaterial-based interlayer to increase the flux and retention of nanofiltration membranes simultaneously. Here, we report a nanofiltration membrane with a hybrid dimensional titania interlayer that exhibits excellent separation performance. The interlayer, composed of Fe-doped titania nanosheets and titania nanoparticles, helps the formation of an ultrathin (∼30 nm thick) and defect-free polyamide selective layer with an ideal nanostructure. The hybrid dimensional interlayer endows the membrane with a superior permeability and alleviates flux decline. In addition, the rigid interlayer framework on a PVDF support drastically improves the pressure resistance of nanofiltration membranes and shows negligible flux loss up to 1.5 MPa of pressure.

13.
Angew Chem Int Ed Engl ; 62(43): e202310388, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37668100

RESUMEN

Aggregation-induced emission (AIE) luminogens (AIEgens) are attractive for the construction of non-doped blue organic light-emitting diodes (OLEDs) owning to their high emission efficiency in the film state. However, the large internal inversion rate (kIC (Tn) ) between high-lying triplet levels (Tn ) and Tn-1 causes a huge loss of triplet excitons, resulting in dissatisfied device performance of these AIEgens-based non-doped OLEDs. Herein, we designed and synthesized a blue luminogen of DPDPB-AC by fusing an AIEgen of TPB-AC and a DMPPP, which feature hot exciton and triplet-triplet annihilation (TTA) up-conversion process, respectively. DPDPB-AC successfully inherits the AIE feature and excellent horizontal dipole orientation of TPB-AC. Furthermore, it owes smaller kIC (Tn) than TPB-AC. When DPDPB-AC was applied in OLED as non-doped emitting layer, an outstanding external quantum efficiency of 10.3 % and an exceptional brightness of 69311 cd m-2 were achieved. The transient electroluminescent measurements and steady-state dynamic analysis confirm that both TTA and hot exciton processes contribute to such excellent device performance. This work provides a new insight into the design of efficient organic fluorophores by managing high-lying triplet excitons.

14.
Biochemistry ; 61(23): 2733-2741, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36351081

RESUMEN

Iron-sulfur (Fe-S) cluster (ISC) cofactors are required for the function of many critical cellular processes. In the ISC Fe-S cluster biosynthetic pathway, IscU assembles Fe-S cluster intermediates from iron, electrons, and inorganic sulfur, which is provided by the cysteine desulfurase enzyme IscS. IscU also binds to Zn, which mimics and competes for binding with the Fe-S cluster. Crystallographic and nuclear magnetic resonance spectroscopic studies reveal that IscU is a metamorphic protein that exists in multiple conformational states, which include at least a structured form and a disordered form. The structured form of IscU is favored by metal binding and is stable in a narrow temperature range, undergoing both cold and hot denaturation. Interestingly, the form of IscU that binds IscS and functions in Fe-S cluster assembly remains controversial. Here, results from variable temperature electrospray ionization (vT-ESI) native ion mobility mass spectrometry (nIM-MS) establish that IscU exists in structured, intermediate, and disordered forms that rearrange to more extended conformations at higher temperatures. A comparison of Zn-IscU and apo-IscU reveals that Zn(II) binding attenuates the cold/heat denaturation of IscU, promotes refolding of IscU, favors the structured and intermediate conformations, and inhibits the disordered high charge states. Overall, these findings provide a structural rationalization for the role of Zn(II) in stabilizing IscU conformations and IscS in altering the IscU active site to prepare for Zn(II) release and cluster synthesis. This work highlights how vT-ESI-nIM-MS can be applied as a powerful tool in mechanistic enzymology by providing details of relationships among temperature, protein conformations, and ligand/protein binding.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/química , Temperatura , Espectrometría de Masa por Ionización de Electrospray , Liasas de Carbono-Azufre/metabolismo , Azufre/metabolismo , Hierro/química , Proteínas de Escherichia coli/química
15.
Cell Biol Toxicol ; 38(6): 1097-1120, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35303175

RESUMEN

BACKGROUND: Long-term exposure to PM2.5 (particulate matter with an aerodynamic diameter of ≤ 2.5 µm) is associated with pulmonary injury and emphysema in patients with chronic obstructive pulmonary disease (COPD). We investigated mechanisms through which the long noncoding RNA lnc-IL7R contributes to cellular damage by inducing oxidative stress in COPD patients exposed to PM2.5. METHODS: Associations of serum lnc-IL7R levels with lung function, emphysema, and previous PM2.5 exposure in COPD patients were analyzed. Reactive oxygen species and lnc-IL7R levels were measured in PM2.5-treated cells. The levels of lnc-IL7R and cellular senescence-associated genes, namely p16INK4a and p21CIP1/WAF1, were determined through lung tissue section staining. The effects of p16INK4a or p21CIP1/WAF1 regulation were examined by performing lnc-IL7R overexpression and knockdown assays. The functions of lnc-IL7R-mediated cell proliferation, cell cycle, senescence, colony formation, and apoptosis were examined in cells treated with PM2.5. Chromatin immunoprecipitation assays were conducted to investigate the epigenetic regulation of p21CIP1/WAF1. RESULTS: Lnc-IL7R levels decreased in COPD patients and were negatively correlated with emphysema or PM2.5 exposure. Lnc-IL7R levels were upregulated in normal lung epithelial cells but not in COPD cells exposed to PM2.5. Lower lnc-IL7R expression in PM2.5-treated cells induced p16INK4a and p21CIP1/WAF1 expression by increasing oxidative stress. Higher lnc-IL7R expression protected against cellular senescence and apoptosis, whereas lower lnc-IL7R expression augmented injury in PM2.5-treated cells. Lnc-IL7R and the enhancer of zeste homolog 2 (EZH2) synergistically suppressed p21CIP1/WAF1 expression through epigenetic modulation. CONCLUSION: Lnc-IL7R attenuates PM2.5-mediated p21CIP1/WAF1 expression through EZH2 recruitment, and its dysfunction may augment cellular injury in COPD.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , ARN Largo no Codificante , Humanos , Apoptosis/genética , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Enfisema/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Subunidad alfa del Receptor de Interleucina-7/genética , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Material Particulado/toxicidad , Enfermedad Pulmonar Obstructiva Crónica/genética , ARN Largo no Codificante/genética
16.
Cell Biol Toxicol ; 38(5): 865-887, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34036453

RESUMEN

Exposure to environmental and occupational contaminants leads to lung cancer. 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potential carcinogen in ambient air or diesel particulate matter. Studies have revealed that short-term exposure to 3-NBA induces cell death, reactive oxygen species activation, and DNA adduct formation and damage. However, details of the mechanism by which chronic exposure to 3-NBA influences lung carcinogenesis remain largely unknown. In this study, human lung epithelial BEAS-2B cells were continuously exposed to 0-10-µM 3-NBA for 6 months. NanoString analysis was conducted to evaluate gene expression in the cells, revealing that 3-NBA-mediated transformation results in a distinct gene expression signature including carbon cancer metabolism, metastasis, and angiogenesis. Alterations in tumor-promoting genes such as EREG (epiregulin), SOX9, E-cadherin, TWIST, and IL-6 were involved in epithelial cell aggressiveness. Kaplan-Meier plotter analyses indicated that increased EREG and IL-6 expressions in early-stage lung cancer cells are correlated with poor survival. In vivo xenografts on 3-NBA-transformed cells exhibited prominent tumor formation and metastasis. EREG knockout cells exposed to 3-NBA for a short period exhibited high apoptosis and low colony formation. By contrast, overexpression of EREG in 3-NBA-transformed cells markedly activated the PI3K/AKT and MEK/ERK signaling pathways, resulting in tumorigenicity. Furthermore, elevated IL-6 and EREG expressions synergistically led to STAT3 signaling activation, resulting in clonogenic cell survival and migration. Taken together, chronic exposure of human lung epithelial cells to 3-NBA leads to malignant transformation, in which the EREG signaling pathway plays a pivotal mediating role. • Short-term exposure of lung epithelial cells to 3-NBA can lead to ROS production and cell apoptosis. • Long-term chronic exposure to 3-NBA upregulates the levels of tumor-promoting genes such as EREG and IL-6. • Increased EREG expression in 3-NBA-transformed cells markedly contributes to tumorigenesis through PI3K/AKT and MEK/ERK activation and synergistically enhances the IL-6/STAT3 signaling pathway, which promotes tumorigenicity.


Asunto(s)
Aductos de ADN , Neoplasias Pulmonares , Benzo(a)Antracenos , Cadherinas/metabolismo , Carbono/metabolismo , Carbono/farmacología , Carcinogénesis/metabolismo , Carcinógenos , Transformación Celular Neoplásica/metabolismo , Aductos de ADN/metabolismo , Aductos de ADN/farmacología , Epirregulina/genética , Epirregulina/metabolismo , Epirregulina/farmacología , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmón/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Material Particulado/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
17.
Nano Lett ; 21(9): 3699-3707, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33886345

RESUMEN

Conjugated polyaniline can impact the field of water filtration membranes due to its hydrophilic and antibacterial nature, facile and inexpensive synthesis procedure, heat and acid tolerance, and unique doping/dedoping chemistry. However, the gelation effect, its rigid backbone, and the limited hydrophilicity of polyaniline severely restrict the adaptability to membranes and their antifouling performance. This Mini Review summarizes important works of polyaniline-related ultrafiltration membranes, highlighting solutions to conquer engineering obstacles in processing and challenges in enhancing surface hydrophilicity with an emphasis on chemistry. As a pH-responsive polymer convertible to a conductive salt, this classic material should continue to bring unconventional advances into the realm of water filtration membranes.


Asunto(s)
Incrustaciones Biológicas , Ultrafiltración , Compuestos de Anilina , Incrustaciones Biológicas/prevención & control , Membranas Artificiales
18.
Medicina (Kaunas) ; 58(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35334536

RESUMEN

Background and Objectives: Traditional assessment of the readiness for the weaning from the mechanical ventilator (MV) needs respiratory parameters in a spontaneous breath. Exempted from the MV disconnecting and manual measurements of weaning parameters, a prediction model based on parameters from MV and electronic medical records (EMRs) may help the assessment before spontaneous breath trials. The study aimed to develop prediction models using machine learning techniques with parameters from the ventilator and EMRs for predicting successful ventilator mode shifting in the medical intensive care unit. Materials and Methods: A retrospective analysis of 1483 adult patients with mechanical ventilators for acute respiratory failure in three medical intensive care units between April 2015 and October 2017 was conducted by machine learning techniques to establish the predicting models. The input candidate parameters included ventilator setting and measurements, patients' demographics, arterial blood gas, laboratory results, and vital signs. Several classification algorithms were evaluated to fit the models, including Lasso Regression, Ridge Regression, Elastic Net, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Machine, and Artificial Neural Network according to the area under the Receiver Operating Characteristic curves (AUROC). Results: Two models were built to predict the success shifting from full to partial support ventilation (WPMV model) or from partial support to the T-piece trial (sSBT model). In total, 3 MV and 13 nonpulmonary features were selected for the WPMV model with the XGBoost algorithm. The sSBT model was built with 8 MV and 4 nonpulmonary features with the Random Forest algorithm. The AUROC of the WPMV model and sSBT model were 0.76 and 0.79, respectively. Conclusions: The weaning predictions using machine learning and parameters from MV and EMRs have acceptable performance. Without manual measurements, a decision-making system would be feasible for the continuous prediction of mode shifting when the novel models process real-time data from MV and EMRs.


Asunto(s)
Aprendizaje Automático , Ventiladores Mecánicos , Adulto , Estudios de Factibilidad , Humanos , Unidades de Cuidados Intensivos , Estudios Retrospectivos
19.
J Cell Physiol ; 236(6): 4669-4680, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33421130

RESUMEN

Triple-negative breast cancer (TNBC) exhibits a higher level of glycolytic capacity and are commonly associated with an inflammatory microenvironment, but the regulatory mechanism and metabolic crosstalk between the tumor and tumor microenvironment (TME) are largely unresolved. Here, we show that glucose transporter 3 (GLUT3) is particularly elevated in TNBC and associated with metastatic progression and poor prognosis in breast cancer patients. Expression of GLUT3 is crucial for promoting the epithelial-to-mesenchymal transition and enhancing invasiveness and distant metastasis of TNBC cells. Notably, GLUT3 is correlated with inflammatory gene expressions and is associated with M1 tumor-associated macrophages (TAMs), at least in part by C-X-C Motif Chemokine Ligand 8 (CXCL8). We found that expression of GLUT3 regulates CXCL8 production in TNBC cells. Secretion of CXCL8 participates in GLUT3-overexpressing TNBC cells-elicited activation of inflammatory TAMs, which further enhances GLUT3 expression and mobility of TNBC cells. Our findings demonstrate that aerobic glycolysis in TNBC not only promotes aggressiveness of tumor cells but also initiates a positive regulatory loop for enhancing tumor progression by modulating the inflammatory TME.


Asunto(s)
Movimiento Celular , Transportador de Glucosa de Tipo 3/metabolismo , Glucólisis , Interleucina-8/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Animales , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Transportador de Glucosa de Tipo 3/genética , Humanos , Interleucina-8/genética , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Células THP-1 , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Macrófagos Asociados a Tumores/inmunología , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Anal Chem ; 93(18): 6924-6931, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33904705

RESUMEN

Stabilities and structure(s) of proteins are directly coupled to their local environment or Gibbs free energy landscape as defined by solvent, temperature, pressure, and concentration. Solution pH, ionic strength, cofactors, chemical chaperones, and osmolytes perturb the chemical potential and induce further changes in structure, stability, and function. At present, no single analytical technique can monitor these effects in a single measurement. Mass spectrometry and ion mobility-mass spectrometry play increasingly essential roles in studies of proteins, protein complexes, and even membrane protein complexes; however, with few exceptions, the effects of the solution temperature on the stability and structure(s) of analytes have not been thoroughly investigated. Here, we describe a new variable-temperature electrospray ionization (vT-ESI) source that utilizes a thermoelectric chip to cool and heat the solution contained within the static ESI emitter. This design allows for solution temperatures to be varied from ∼5 to 98 °C with short equilibration times (<2 min) between precisely controlled temperature changes. The performance of the apparatus for vT-ESI-mass spectrometry and vT-ESI-ion mobility-mass spectrometry studies of cold- and heat-folding reactions is demonstrated using ubiquitin and frataxin. Instrument performance for studies on temperature-dependent ligand binding is shown using the chaperonin GroEL.


Asunto(s)
Proteínas , Espectrometría de Masa por Ionización de Electrospray , Ligandos , Transición de Fase , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA