Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Food Sci Technol ; 60(3): 966-974, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908336

RESUMEN

Pidan, a pickled duck egg, is a traditional Chinese cuisine and generally produced by soaking in metal ion containing strong alkaline solution such as NaOH solution. However, nowadays consumers possess negative perception for using strong alkali in food processing. Therefore, the objective of the current study was to determine the potential of incinerated eggshell powder and alkaline electrolyzed oxidized (EO) water for pidan production rather than harmful NaOH use. This study aims to obtain the optimal physicochemical and sensory qualities of pidan. Various dosing (1-5%) of the incinerated eggshell powder solution or alkaline EO water was used as a basic pickling solution. Duck eggs were pickled at 25-27 °C for 15-30 days with 3 days of an observation interval. Actual commercial process commonly undergoes for 14 days of ripening, after 25 days of picking process with incinerated eggshell powder or EO water. Results showed that physicochemical and sensory attributes of pidan obtained by incinerated eggshell powder solution and alkaline EO water were not significantly different (P < 0.05) from the commercial product. This study reports a cost-effective and green alternative method for pidan processing by replacing costly NaOH without compromising their physico-chemical and sensory attributes.

2.
J Food Sci Technol ; 60(3): 1006-1014, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908362

RESUMEN

Pacific saury is a primarily wild-caught fish in Taiwan and contains high amounts of polyunsaturated fatty acids (PUFAs). Therefore, its consumption is encouraged by Taiwanese government due to its high nutrition values and affordable price. In this study, four products, Minced saury with pork, Minced saury with XO sauce, Crispy dried saury, and Saury roll with roe, were developed. Optimization of the processing and ingredients were determined by a group of expert panelists, then by a large group of regular consumers. Total bacterial count, coliform, Escherichia coli, volatile base nitrogen, water content, and water activity were analyzed for shelf-life stability. In addition, the indexes of oil oxidation such as acid values, peroxide, and thiobarbituric acid were determined for the oil quality of products. Compositions of fatty acids and fragrant compounds were also analyzed. All microbial, physicochemical, and oil oxidation indexes of the products complied with the official regulations and industrial standards of Taiwan. Composition of fragrant compounds closely related with sensory characteristics and PUFAs composition were not degraded by the processing and storage. A new brand name, Hsiung-Chou, and the logo were established and the products were contracted to manufacturers for commercial production. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05432-1.

3.
J Food Sci Technol ; 60(6): 1711-1722, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37187986

RESUMEN

Chondroitin sulfate (ChS) from marine sources is gaining attention. The purpose of this study was to extract ChS from jumbo squid cartilage (Dosidicus gigas) using ultrasound-assisted enzymatic extraction (UAEE). An ultrasound with protease assistance, including either alcalase, papain or Protin NY100 was used to extract ChS. The results showed that alcalase had the best extraction efficiency. The response surface methodology was employed to evaluate the relationship between extraction conditions and extraction yield of ChS. The ridge max analysis revealed a maximum extraction yield of 11.9 mg ml- 1 with an extraction temperature of 59.40 °C, an extraction time of 24.01 min, a pH of 8.25, and an alcalase concentration of 3.60%. Compared to ethanol precipitation, purification using a hollow fiber dialyzer (HFD) had a higher extraction yield of 62.72% and purity of 85.96%. The structure characteristics of ChS were identified using FTIR, 1 H-NMR, and 13 C-NMR to confirm that the purified ChS structure was present in the form of chondroitin-4-sulfate and chondroitin-6-sulfate. The results of this study provide a green and efficient process for extraction and purification of ChS and are essential for the use of ChS for the development and production of nutrient food products or pharmaceuticals. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05701-7.

4.
Phys Chem Chem Phys ; 23(33): 18189-18196, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34612282

RESUMEN

Rare-earth monopnictides have attracted much attention due to their unusual electronic and topological properties for potential device applications. Here, we study rock-salt structured lanthanum monopnictides LaX (X = P, As) by density functional theory (DFT) simulations. We show systematically that a meta-GGA functional combined with scissor correction can efficiently and accurately compute the electronic structures on a fine DFT k-grid, which is necessary for converging thermoelectric calculations. We also show that strain engineering can effectively improve the thermoelectric performance. Under the optimal conditions of 2% isotropic tensile strain and carrier concentration n = 3 × 1020 cm-3, LaP at a temperature of 1200 K can achieve a figure of merit ZT value >2, which is enhanced by 90% compared to the unstrained value. With carrier doping and strain engineering, lanthanum monopnictides thereby could be promising high-temperature thermoelectric materials.

5.
Compr Rev Food Sci Food Saf ; 20(1): 583-626, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33443805

RESUMEN

Nonthermal plasma (NTP) is an advanced technology that has gained extensive attention because of its capacity for decontaminating food from both biological and chemical sources. Plasma-activated water (PAW), a product of NTP's reaction with water containing a rich diversity of highly reactive oxygen species (ROS) and reactive nitrogen species (RNS), is now being considered as the primary reactive chemical component in food decontamination. Despite exciting developments in this field recently, at present there is no comprehensive review specifically focusing on the comprehensive effects of PAW on food safety and quality. Although PAW applications in biological decontamination have been extensively evaluated, a complete analysis of the most recent developments in PAW technology (e.g., PAW combined with other treatments, and PAW applications in chemical degradation and as curing agents) is nevertheless lacking. Therefore, this review focuses on PAW applications for enhanced food safety (both biological and chemical safeties) according to the latest studies. Further, the subsequent effects on food quality (chemical, physical, and sensory properties) are discussed in detail. In addition, several recent trends of PAW developments, such as curing agents, thawing media, preservation of aquatic products, and the synergistic effects of PAW in combination with other traditional treatments, are also presented. Finally, this review outlines several limitations presented by PAW treatment, suggesting several future research directions and challenges that may hinder the translation of these technologies into real-life applications.


Asunto(s)
Gases em Plasma , Purificación del Agua , Calidad de los Alimentos , Inocuidad de los Alimentos , Agua
6.
Appl Opt ; 54(28): E159-64, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26479647

RESUMEN

The major factors of an illuminative environment are a high rendering index and uniformity. The natural light illumination system (NLIS) is used to guide sunlight for indoor illumination. The NLIS consists of three subsystems: collecting, transmitting, and emitting. Nowadays, a variety of light emitters are available for different illuminative environments. This paper proposes a linear microstructure to diffuse parallel light for indoor illumination. To increase uniformity and promote the illuminative area, the light emitter includes two microstructures for the distribution of light. Finally, the proposed light emitter gives illuminance uniformity and efficiency of 0.55% and 74.18%, respectively.

7.
Appl Opt ; 53(29): H35-43, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25322429

RESUMEN

In developing a daylighting system, the overall system efficiency is crucial. In the daylighting system, whether the light propagates parallel strongly affects the efficiency. In this paper, we simulate a multicurvature lens to collimate rays propagated from different angles. We describe a method based on a freeform microlens array, which increases transmission efficiency. Results show that with the freeform microlens array collimator, the light propagates provide at least 50.26% parallel and the efficiency increases by 24.76%, enhancing the core values of the daylighting system in building illumination.

8.
Int J Food Microbiol ; 398: 110213, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37120942

RESUMEN

The major pathogen associated with eggs is Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) and chlorine washing is the most widely used for sanitization. Microbubble, a novel technique and able to operate in large quantity, has been presented to be an alternative method. Thus, microbubble water combining with ozone (OMB) was applied to disinfect S. Enteritidis spiked on shells at 107 cells per egg. OMB was generated by injecting ozone into a Nikuni microbubble system, then delivered into 10 L of water. After 5, 10, or 20 min of activation time, the eggs were placed into OMB and washed for 30 or 60 s. The controls involved unwashed, water washing, ozone only, and microbubble only (MB). The highest reduction, 5.19 log CFU/egg, was achieved by the combination of 20-min activation and 60-s washing, which was used for following tests of large water quantities. Comparing with the unwashed control, 4.32, 3.73 and 3.07 log CFU/egg reductions were achieved in 25, 80, and 100 L of water, respectively. The other system, Calpeda, with higher motor power was tested in 100 L and obtained a reduction of 4.15 log CFU/egg. The average diameter of bubbles generated by Nikuni and Calpeda pump systems were 29.05 and 36.50 µm, respectively, which both were within the microbubble definition of ISO. Much lower reductions, around 1-2 log10 CFU/egg, were shown with the treatments of ozone only and MB by the same operative parameters. After 15-day storage at ambient temperature, the OMB-treated eggs showed similar sensory quality with the unwashed ones. This is the first study demonstrating that OMB effectively inactivates S. Enteritidis on shell eggs in large quantity of water and does not diminished the sensory characteristics of eggs. Furthermore, bacterial population was under the detection limit in the OMB-treated water.


Asunto(s)
Ozono , Animales , Ozono/farmacología , Salmonella enteritidis , Agua , Microburbujas , Huevos/microbiología , Cáscara de Huevo/microbiología , Pollos , Microbiología de Alimentos
9.
Sci Total Environ ; 874: 162235, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36791866

RESUMEN

The presence of chemical contaminants in foods and agricultural products is one of the major safety issues worldwide, posing a serious concern to human health. Nonthermal plasma (NTP) containing richly reactive oxygen and nitrogen species (RONS) has been trialed as a potential decontamination method. Yet, this technology comes with multiple downsides, including adverse effects on the quality of treated foods and limited exposure to entire surfaces on samples with hard-to-reach spots, further hindering real-life applications. Therefore, plasma-activated water (PAW) has been recently developed to facilitate the interactions between RONS and contaminant molecules in the liquid phase, allowing a whole surface treatment with efficient chemical degradation. Here, we review the recent advances in PAW utilized as a chemical decontamination agent in foods. The reaction mechanisms and the main RONS contributors involved in the PAW-assisted removal of chemical contaminants are briefly outlined. Also, the comprehensive effects of these treatments on food qualities (chemical and physical characteristics) and toxicological evaluation of PAW (in vitro and in vivo) are thoroughly discussed. Ultimately, we identified some current challenges and provided relevant suggestions, which can further promote PAW research for real-life applications in the future.


Asunto(s)
Gases em Plasma , Agua , Humanos , Agua/química , Descontaminación/métodos , Microbiología de Alimentos , Alimentos , Especies Reactivas de Oxígeno , Gases em Plasma/química
10.
Materials (Basel) ; 15(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35454458

RESUMEN

The compression behavior of the hexagonal AlB2 phase of Hafnium Diboride (HfB2) was studied in a diamond anvil cell to a pressure of 208 GPa by axial X-ray diffraction employing platinum as an internal pressure standard. The deformation behavior of HfB2 was studied by radial X-ray diffraction technique to 50 GPa, which allows for measurement of maximum differential stress or compressive yield strength at high pressures. The hydrostatic compression curve deduced from radial X-ray diffraction measurements yielded an ambient-pressure volume V0 = 29.73 Å3/atom and a bulk modulus K0 = 282 GPa. Density functional theory calculations showed ambient-pressure volume V0 = 29.84 Å3/atom and bulk modulus K0 = 262 GPa, which are in good agreement with the hydrostatic experimental values. The measured compressive yield strength approaches 3% of the shear modulus at a pressure of 50 GPa. The theoretical strain-stress calculation shows a maximum shear stress τmax~39 GPa along the (1-10) [110] direction of the hexagonal lattice of HfB2, which thereby can be an incompressible high strength material for extreme-environment applications.

11.
Materials (Basel) ; 15(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591574

RESUMEN

The high-entropy transition metal borides containing a random distribution of five or more constituent metallic elements offer novel opportunities in designing materials that show crystalline phase stability, high strength, and thermal oxidation resistance under extreme conditions. We present a comprehensive theoretical and experimental investigation of prototypical high-entropy boride (HEB) materials such as (Hf, Mo, Nb, Ta, Ti)B2 and (Hf, Mo, Nb, Ta, Zr)B2 under extreme environments of pressures and temperatures. The theoretical tools include modeling elastic properties by special quasi-random structures that predict a bulk modulus of 288 GPa and a shear modulus of 215 GPa at ambient conditions. HEB samples were synthesized under high pressures and high temperatures and studied to 9.5 GPa and 2273 K in a large-volume pressure cell. The thermal equation of state measurement yielded a bulk modulus of 276 GPa, in excellent agreement with theory. The measured compressive yield strength by radial X-ray diffraction technique in a diamond anvil cell was 28 GPa at a pressure of 65 GPa, which is a significant fraction of the shear modulus at high pressures. The high compressive strength and phase stability of this material under high pressures and high temperatures make it an ideal candidate for application as a structural material in nuclear and aerospace fields.

12.
J Hazard Mater ; 434: 128610, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35430454

RESUMEN

This study investigated the efficiency of plasma-activated water (PAW) on the reduction of pesticides, namely, metribuzin and metobromuron, and the effect of PAW treatment on the quality of fresh chrysanthemums. The reduction efficiencies reached 74.3% for metribuzin and 38.2% for metobromuron after 240 s of PAW treatment. Compared with reverse osmosis (RO) water, PAW achieved significantly higher pesticide reductions because of its higher acidity, enhanced oxidizing ability, and increased formation of reactive species. Moreover, when compared with metobromuron, metribuzin was reduced more efficiently irrespective of the RO water or PAW treatments because of its higher water solubility, lower log octanol-water partition coefficient, and more oxidizable chemical structure. Additionally, the PAW treatment did not cause adverse changes to the chrysanthemums' color, total flavonoid content, radical scavenging, or metal chelating activities, but it did cause a slight decrease in the chrysanthemums' aroma compounds and total reducing power. This study successfully demonstrated the effectiveness of PAW for reducing pesticides in herbal flowers like chrysanthemums and reveals PAW's promising potential to treat foods with non-smooth surfaces.


Asunto(s)
Chrysanthemum , Residuos de Plaguicidas , Chrysanthemum/química , Flores , Residuos de Plaguicidas/análisis , Solubilidad , Agua/química
13.
Front Psychol ; 13: 930713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898977

RESUMEN

Exposure to forest environments promotes human health. The number of relevant studies in this area has increased rapidly. However, an overall review of relevant analyses from the perspectives of bibliometrics and visualization is lacking. A scientometric analysis of 2,545 publications from 2007 to 2021 via the Web of Science database was conducted to identify the knowledge structure and frontiers objectively. The publications were subsequently analyzed in terms of the distribution of journals and countries, citation bursts, major subject areas, and evolutionary stages. The findings showed that the knowledge foundation of forest therapy was multidisciplinary with most published in the fields of environmental sciences and ecology but lacking input from social disciplines. The research hotspots evolved from the early focus on individual benefits obtained from nature to increasing attention on human well-being at the social-ecological scale. More rigorous experiments with strict randomized controlled trials and blinding are needed to accommodate the trend of forest therapy toward non-pharmacological treatments. According to Shneider's four-stage theory, forest therapy research is in the third stage of the scientific research process. More future studies utilizing novel technologies and decision-making frameworks to solve practical issues are needed for introducing health into policies and promoting human well-being.

14.
Int J Food Microbiol ; 355: 109332, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34358812

RESUMEN

Consumer awareness and distaste towards both bacterial and chemical contaminations on food items have been increasing in recent years. Non-thermal plasma (NTP) is a cutting-edge technology which has been shown to effectively inactivate bacteria on the treated foods. Although the general NTP with a single plasma jet is appropriate for the continuous operation process, it suffers limitations due to its smaller scanning area. Here, a novel NTP device with a double rotary nozzle jet system was utilized, which could treat an area instead of a point. The shell eggs inoculated with Salmonella enterica serotype Enteritidis (SE) were placed on a moving platform under the double rotary nozzle jet system. The efficacy of the NTP treatment on microbial decontamination was evaluated by testing a total of 26 combinations of operating parameters consisting of various plasma power (150, 180, 210 W), argon flow rate (10, 15, 20 slm), repetition of the moving platform (4, 6, 8 times), and speed of the moving platform (5, 10 mm/s). Although significantly higher SE reduction (p < 0.05) was achieved with higher power, more repetitions, larger argon flow rates, and lower speed of the platform, these parameters induced significant alterations in the sensory properties of the treated eggs. By comprehensively considering the bacterial reductions, egg quality, and sensory properties, NTP treatment with combination T (180 W-15 slm-6 times-10 mm/s) was determined to be the optimal parameter, which achieved >4 log CFU/egg of SE reduction and significantly better sensory properties than commercially washed eggs (p < 0.05). Additionally, SEM analysis revealed that NTP treatment with combination T resulted in less damage to egg cuticles compared to commercially washed eggs. This novel NTP device offers an efficient antibacterial activity under shorter exposure time (30 s), smaller argon flow rate (15 slm), and lower power (180 W) without adversely affecting the overall quality of the treated eggs. Therefore, this NTP device equipped with the double rotary jet system possesses a potential solution for future industrial applications.


Asunto(s)
Desinfección , Cáscara de Huevo , Microbiología de Alimentos , Gases em Plasma , Salmonella enteritidis , Animales , Pollos , Recuento de Colonia Microbiana , Desinfección/instrumentación , Desinfección/métodos , Cáscara de Huevo/microbiología , Huevos/microbiología , Microbiología de Alimentos/instrumentación , Microbiología de Alimentos/métodos , Gases em Plasma/farmacología , Salmonella enteritidis/efectos de los fármacos
15.
Lab Chip ; 10(5): 647-53, 2010 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-20162241

RESUMEN

Axons are long, slender processes extending from the cell bodies of neurons and play diverse and crucial roles in the development and function of nervous systems. Here, we describe the development of a chip device that can be used to produce large quantities of axons for proteomic and RNA analyses. On the chip surface, bundles of axons of rat hippocampal neurons in culture are guided to grow in areas distinct and distant from where their cell bodies reside. Fluorescence immunocytochemical studies have confirmed that the areas where these axons are guided to grow are occupied exclusively by axons and not by neuronal somatodendrites or astroglial cells. These axon-occupied parts are easily separated from the remainder of the chip and collected by breaking the chip along the well-positioned linear grooves made on the backside. One- and two-dimensional gel electrophoresis and Western blotting analyses reveal that the axons and whole cells differ in their protein compositions. RT-PCR analyses also indicate that the axons contain only a subset of neuronal RNAs. Furthermore, the chip device could be easily modified to address other issues concerning neuronal axons, such as the molecular composition of the axon substructure, the growth cone and shaft, the degeneration and regeneration processes associated with injured axons and the effects of extrinsic molecules, such as axon guidance cues and cell adhesion molecules, on the axon. With these diverse applications, the chip device described here will serve as a powerful platform for studying the functional proteome of neuronal axons.


Asunto(s)
Axones/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Proteoma/análisis , Proteoma/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/metabolismo , Ratas
16.
Foods ; 9(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086594

RESUMEN

Eggs are one of the most commonly consumed food items. Currently, chlorine washing is the most common method used to sanitize shell eggs. However, chlorine could react with organic matters to form a potential carcinogen, trihalomethanes, which can have a negative impact on human health. Plasma-activated water (PAW) has been demonstrated to inactivate microorganisms effectively without compromising the sensory qualities of shell eggs. For this study, various amounts (250, 500, 750, or 1000 mL) of PAW were generated by using one or two plasma jet(s) at 60 watts for 20 min with an air flow rate at 6 or 10 standard liters per minute (slm). After being inoculated with 7.0 log CFU Salmonella Enteritidis, one shell egg was placed into PAW for 30, 60, or 90 s with 1 or 2 acting plasma jet(s). When 2 plasma jets were used in a large amount of water (1000 mL), populations of S. Enteritidis were reduced from 7.92 log CFU/egg to 2.84 CFU/egg after 60 s of treatment. In addition, concentrations of ozone, hydrogen peroxide, nitrate, and nitrite in the PAW were correlated with the levels of antibacterial efficacy. The highest concentrations of ozone (1.22 ppm) and nitrate (55.5 ppm) were obtained with a larger water amount and lower air flow rate. High oxidation reduction potential (ORP) and low pH values were obtained with longer activation time, more plasma jet, and a lower air flow rate. Electron paramagnetic resonance (EPR) analyses demonstrated that reactive oxygen species (ROS) were generated in the PAW. The observation under the scanning electron microscope (SEM) revealed that bacterial cells were swollen, or even erupted after treatment with PAW. These results indicate that the bacterial cells lost control of cell permeability after the PAW treatment. This study shows that PAW is effective against S. Enteritidis on shell eggs in a large amount of water. Ozone, nitrate, and ROS could be the main causes for the inactivation of bacterial cells.

17.
Materials (Basel) ; 13(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260069

RESUMEN

An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the Re and B bond direction renders the material highly incompressible along the c-axis. Our study helps to establish the fundamental basis for anisotropic compression of ReB2 under ultrahigh pressures.

18.
J Phys Condens Matter ; 32(40): 405703, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32516754

RESUMEN

High pressure study on ultra-hard transition-metal boride Os2B3 was carried out in a diamond anvil cell under isothermal and non-hydrostatic compression with platinum as an x-ray pressure standard. The ambient-pressure hexagonal phase of Os2B3 is found to be stable with a volume compression V/V 0 = 0.670 ± 0.009 at the maximum pressure of 358 ± 7 GPa. Anisotropic compression behavior is observed in Os2B3 to the highest pressure, with the c-axis being the least compressible. The measured equation of state using the 3rd-order Birch-Murnaghan fit reveals a bulk modulus K 0 = 397 GPa and its first pressure derivative [Formula: see text] = 4.0. The experimental lattice parameters and bulk modulus at ambient conditions also agree well with our density-functional-theory (DFT) calculations within an error margin of ∼1%. DFT results indicate that Os2B3 becomes more ductile under compression, with a strong anisotropy in the axial bulk modulus persisting to the highest pressure. DFT further enables the studies of charge distribution and electronic structure at high pressure. The pressure-enhanced electron density and repulsion along the Os and B bonds result in a high incompressibility along the crystal c-axis. Our work helps to elucidate the fundamental properties of Os2B3 under ultrahigh pressure for potential applications in extreme environments.

19.
Nanotechnology ; 20(46): 465502, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19843988

RESUMEN

This study reports a flexible carbon nanotubes' (fCNTs) photosensor for light detection. The fCNTs photosensor is batch-fabricated using micromachining processes. In this device, CNTs (carbon nanotubes) are embedded into the flexible Parylene-C film using a batch micromachining process. Through this fabrication process, CNTs act as the component for light detection, and Parylene-C provides the flexibility of the device. In application, the fCNTs photosensor is implemented. The photocurrent response measurements indicate that the presented fCNTs photosensor operated as a function of heterostructure interface, pressure, light intensity and bias voltage under red laser illumination. The quantum efficiency of the fabricated fCNTs device is about 0.063% at atmospheric pressure, and becomes 1.93% in a vacuum of 3 mTorr. Thus, the presented fCNTs device has the potential for photosensor application. The position detection of a light source using the fCNTs photosensor array has also been demonstrated.

20.
Foods ; 8(10)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640162

RESUMEN

Egg is a regularly consumed food item. Currently, chlorinated water washing is the most common practice used to disinfect eggs, but this process has a negative environmental impact. A new physical technique, plasma-activated water (PAW), has been demonstrated to possess effective antibacterial activities without long-term chemical residue. In this study, air PAW was used to inactivate Salmonella enterica serovar Enteritidis on shell eggs. Different combinations of activation parameters, including water sources (reverse osmotic (RO) water, tap water), power (40 W, 50 W, 60 W) and activation time (10 min, 20 min, 30 min), were evaluated. The oxidation-reduction potential (ORP) and pH values of each combination were measured, and their antibacterial activity was tested in a bacterial suspension. Higher antibacterial activities, higher ORP values, and lower pH values were obtained with higher power, longer activation time, and lower water hardness. The antibacterial activities of PAW decreased rapidly by increasing the storage time both at room and refrigeration temperatures. Afterwards, RO water was pre-activated for 20 min at 60 W, and then the eggs inoculated with S. enteritidis were placed into PAW for 30 s, 60 s, 90 s, or 120 s with a plasma on-site treatment in the water. More than a 4 log reduction was obtained with 60-s and 120-s treatments. The results showed that the freshness indexes of the eggs treated with PAW were similar to those of the untreated controls and better than those of the eggs treated with commercial processes. In addition, observation under a scanning electron microscope also showed less surface damage of the cuticle on the PAW-treated eggs than on the commercially treated eggs. The results of this study indicate that PAW could be an effective antibacterial agent with less damage to the freshness of shell eggs than commercial methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA