RESUMEN
Galectin-4, a member of the galectin family of animal glycan-binding proteins (GBPs), is specifically expressed in gastrointestinal epithelial cells and is known to be able to bind microbes. However, its function in host-gut microbe interactions remains unknown. Here, we show that intracellular galectin-4 in intestinal epithelial cells (IECs) coats cytosolic Salmonella enterica serovar Worthington and induces the formation of bacterial chains and aggregates. Galectin-4 enchains bacteria during their growth by binding to the O-antigen of lipopolysaccharides. Furthermore, the binding of galectin-4 to bacterial surfaces restricts intracellular bacterial motility. Galectin-4 enhances caspase-1 activation and mature IL-18 production in infected IECs especially when autophagy is inhibited. Finally, orally administered S. enterica serovar Worthington, which is recognized by human galectin-4 but not mouse galectin-4, translocated from the intestines to mesenteric lymph nodes less effectively in human galectin-4-transgenic mice than in littermate controls. Our results suggest that galectin-4 plays an important role in host-gut microbe interactions and prevents the dissemination of pathogens. The results of the study revealed a novel mechanism of host-microbe interactions that involves the direct binding of cytosolic lectins to glycans on intracellular microbes.
Asunto(s)
Galectina 4 , Inflamasomas , Animales , Ratones , Humanos , Inflamasomas/metabolismo , Galectina 4/metabolismo , Células Epiteliales/metabolismo , Bacterias , Antígenos O/metabolismoRESUMEN
BACKGROUND: Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS: Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS: CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS: The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.
Asunto(s)
Colesterol/análogos & derivados , Helicobacter pylori , Helicobacter pylori/metabolismo , Helicobacter pylori/fisiología , Ratones , Animales , Humanos , Lípidos de la Membrana/metabolismo , Línea Celular Tumoral , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Ésteres del Colesterol/metabolismoRESUMEN
Cytosolic lipopolysaccharides (LPSs) bind directly to caspase-4/5/11 through their lipid A moiety, inducing inflammatory caspase oligomerization and activation, which is identified as the noncanonical inflammasome pathway. Galectins, ß-galactoside-binding proteins, bind to various gram-negative bacterial LPS, which display ß-galactoside-containing polysaccharide chains. Galectins are mainly present intracellularly, but their interactions with cytosolic microbial glycans have not been investigated. We report that in cell-free systems, galectin-3 augments the LPS-induced assembly of caspase-4/11 oligomers, leading to increased caspase-4/11 activation. Its carboxyl-terminal carbohydrate-recognition domain is essential for this effect, and its N-terminal domain, which contributes to the self-association property of the protein, is also critical, suggesting that this promoting effect is dependent on the functional multivalency of galectin-3. Moreover, galectin-3 enhances intracellular LPS-induced caspase-4/11 oligomerization and activation, as well as gasdermin D cleavage in human embryonic kidney (HEK) 293T cells, and it additionally promotes interleukin-1ß production and pyroptotic death in macrophages. Galectin-3 also promotes caspase-11 activation and gasdermin D cleavage in macrophages treated with outer membrane vesicles, which are known to be taken up by cells and release LPSs into the cytosol. Coimmunoprecipitation confirmed that galectin-3 associates with caspase-11 after intracellular delivery of LPSs. Immunofluorescence staining revealed colocalization of LPSs, galectin-3, and caspase-11 independent of host N-glycans. Thus, we conclude that galectin-3 amplifies caspase-4/11 oligomerization and activation through LPS glycan binding, resulting in more intense pyroptosis-a critical mechanism of host resistance against bacterial infection that may provide opportunities for new therapeutic interventions.
Asunto(s)
Caspasas/metabolismo , Galectina 3/metabolismo , Inflamasomas/inmunología , Inflamación/inmunología , Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Animales , Citosol/metabolismo , Galectina 3/genética , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , PiroptosisRESUMEN
BACKGROUND: Based on the molecular expression of cancer cells, molecular subtypes of breast cancer have been applied to classify patients for predicting clinical outcomes and prognosis. However, further evidence is needed regarding the influence of molecular subtypes on the efficacy of radiotherapy (RT) after breast-conserving surgery (BCS), particularly in a population-based context. Hence, the present study employed a propensity-score-matched cohort design to investigate the potential role of molecular subtypes in stratifying patient outcomes for post-BCS RT and to identify the specific clinical benefits that may emerge. METHODS: From 2006 to 2019, the present study included 59,502 breast cancer patients who underwent BCS from the Taiwan National Health Insurance Research Database. Propensity scores were utilized to match confounding variables between patients with and without RT within each subtype of breast cancer, namely luminal A, luminal B/HER2-negative, luminal B/HER2-positive, basal-like, and HER2-enriched ones. Several clinical outcomes were assessed, in terms of local recurrence (LR), regional recurrence (RR), distant metastasis (DM), disease-free survival (DFS), and overall survival (OS). RESULTS: After post-BCS RT, patients with luminal A and luminal B/HER2-positive breast cancers exhibited a decrease in LR (adjusted hazard ratio [aHR] = 0.18, p < 0.0001; and, 0.24, p = 0.0049, respectively). Furthermore, reduced RR and improved DFS were observed in patients with luminal A (aHR = 0.15, p = 0.0004; and 0.29, p < 0.0001), luminal B/HER2-negative (aHR = 0.06, p = 0.0093; and, 0.46, p = 0.028), and luminal B/HER2-positive (aHR = 0.14, p = 0.01; and, 0.38, p < 0.0001) breast cancers. Notably, OS benefits were found in patients with luminal A (aHR = 0.62, p = 0.002), luminal B/HER2-negative (aHR = 0.30, p < 0.0001), basal-like (aHR = 0.40, p < 0.0001), and HER2-enriched (aHR = 0.50, p = 0.03), but not luminal B/HER2-positive diseases. Remarkably, when considering DM, luminal A patients who received RT demonstrated a lower cumulative incidence of DM than those without RT (p = 0.02). CONCLUSION: In patients with luminal A breast cancer who undergo BCS, RT could decrease the likelihood of tumor metastasis. After RT, the tumor's hormone receptor status may predict tumor control regarding LR, RR, and DFS. Besides, the HER2 status of luminal breast cancer patients may serve as an additional predictor of OS after post-BCS RT. However, further prospective studies are required to validate these findings.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Estudios de Cohortes , Mastectomía Segmentaria , Puntaje de Propensión , Receptor ErbB-2/metabolismo , Pronóstico , Estudios Retrospectivos , Recurrencia Local de Neoplasia/patologíaRESUMEN
Hybrid natural products are compounds that originate from diverse biosynthetic pathways and undergo a conjugation process, which enables them to expand their chemical diversity and biological functionality. Terpene-amino acid meroterpenoids have garnered increasing attention in recent years, driven by the discovery of noteworthy examples such as the anthelmintic CJ-12662, the insecticidal paeciloxazine, and aculene A (1). In the biosynthesis of terpene-amino acid natural products, single-module nonribosomal peptide synthetases (NRPSs) have been identified to be involved in the esterification step, catalyzing the fusion of modified terpene and amino acid components. Despite prior investigations into these NRPSs through gene deletion or in vivo experiments, the enzymatic basis and mechanistic insights underlying this family of single-module NRPSs remain unclear. In this study, we performed biochemical characterization of AneB by in vitro characterization, molecular docking, and site-directed mutagenesis. The enzyme reaction analyses, performed with L-proline and daucane/nordaucane sesquiterpene substrates, revealed that AneB specifically esterifies the C10-OH of aculenes with L-proline. Notably, in contrast to ThmA in CJ-12662 biosynthesis, which exclusively recognizes oxygenated amorpha-4,11-diene sesquiterpenes for L-tryptophan transfer, AneB demonstrates broad substrate selectivity, including oxygenated amorpha-4,11-diene and 2-phenylethanol, resulting in the production of diverse unnatural prolyl compounds. Furthermore, site-directed mutagenesis experiments indicated the involvement of H794 and D798 in the esterification catalyzed by AneB. Lastly, domain swapping between AneB and ThmA unveiled that the AâT domains of ThmA can be effectively harnessed by the C domain of AneB for L-tryptophan transfer, thus highlighting the potential of the C domain of AneB for generating various terpene-amino acid meroterpenoid derivatives. ONE-SENTENCE SUMMARY: The enzymatic basis and mechanistic insights into AneB, a single-module NRPS, highlight its capacity to generate various terpene-amino acid meroterpenoid derivatives.
Asunto(s)
Aminoácidos , Productos Biológicos , Simulación del Acoplamiento Molecular , Terpenos , Triptófano , Péptido Sintasas/metabolismo , Catálisis , ProlinaRESUMEN
The advent of simultaneous wireless information and power (SWIPT) has been regarded as a promising technique to provide power supplies for an energy sustainable Internet of Things (IoT), which is of paramount importance due to the proliferation of high data communication demands of low-power network devices. In such networks, a multi-antenna base station (BS) in each cell can be utilized to concurrently transmit messages and energies to its intended IoT user equipment (IoT-UE) with a single antenna under a common broadcast frequency band, resulting in a multi-cell multi-input single-output (MISO) interference channel (IC). In this work, we aim to find the trade-off between the spectrum efficiency (SE) and energy harvesting (EH) in SWIPT-enabled networks with MISO ICs. For this, we derive a multi-objective optimization (MOO) formulation to obtain the optimal beamforming pattern (BP) and power splitting ratio (PR), and we propose a fractional programming (FP) model to find the solution. To tackle the nonconvexity of FP, an evolutionary algorithm (EA)-aided quadratic transform technique is proposed, which recasts the nonconvex problem as a sequence of convex problems to be solved iteratively. To further reduce the communication overhead and computational complexity, a distributed multi-agent learning-based approach is proposed that requires only partial observations of the channel state information (CSI). In this approach, each BS is equipped with a double deep Q network (DDQN) to determine the BP and PR for its UE with lower computational complexity based on the observations through a limited information exchange process. Finally, with the simulation experiments, we verify the trade-off between SE and EH, and we demonstrate that, apart from the FP algorithm introduced to provide superior solutions, the proposed DDQN algorithm also shows its performance gain in terms of utility to be up to 1.23-, 1.87-, and 3.45-times larger than the Advantage Actor Critic (A2C), greedy, and random algorithms, respectively, in comparison in the simulated environment.
RESUMEN
We developed a versatile asymmetric strategy to synthesize different classes of sulfoglycolipids (SGLs) from Mycobacterium tuberculosis. The strategy features the use of asymmetrically protected trehaloses, which were acquired from the glycosylation of TMS α-glucosyl acceptors with benzylidene-protected thioglucosyl donors. The positions of the protecting groups at the donors and acceptors can be fine-tuned to obtain different protecting-group patterns, which is crucial for regioselective acylation and sulfation. In addition, a chemoenzymatic strategy was established to prepare the polymethylated fatty acid building blocks. The strategy employs inexpensive lipase as a desymmetrization agent in the preparation of the starting substrate and readily available chiral oxazolidinone as a chirality-controlling agent in the construction of the polymethylated fatty acids. A subsequent investigation on the immunomodulatory properties of each class of SGLs showed how the structures of SGLs impact the host innate immunity response.
Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/química , Glucolípidos/química , Glicosilación , Acilación , Ácidos Grasos , EstereoisomerismoRESUMEN
Galectin-3 (GAL3) is a ß-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.
Asunto(s)
Infecciones por VIH , VIH-1 , Proteínas Sanguíneas , Linfocitos T CD4-Positivos/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Humanos , Lípidos de la Membrana/análisis , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/químicaRESUMEN
BACKGROUND: An increased incidence of pulmonary tuberculosis (PTB) among patients with pulmonary diseases exposed to air pollution has been reported. OBJECTIVE: To comprehensively investigate the association between pneumonia (PN) and air pollution with PTB through a large-scale follow-up study. METHODS: We conducted a retrospective study using data from the Kaohsiung Medical University Hospital Research Database and the Taiwan Air Quality Monitoring Database. We included adult patients with PN, PTB and other comorbidities according to ICD-9 codes. Control subjects without PN were matched by age, sex and ten comorbidities to each PN patient at a ratio of 4:1. RESULTS: A total of 82,590 subjects were included. The PTB incidence rate was significantly higher in the PN group (2,391/100,000) than in the control group (1,388/100,000). The crude hazard ratio (HR) of PN-associated PTB incidence decreased with time, and the overall 7 years the HR (95% confidence interval; CI) was 1.74 (1.55-1.96). The overall adjusted HR and 95% CI of PN-related PTB in the multivariate Cox regression analysis was 3.38 (2.98-3.84). In addition, there was a cumulative lag effect of all air pollutants within 30 days of exposure. The peak adjusted HRs for PTB were noted on the 3rd, 8th, 12th and 12th days of PM2.5, O3, SO2 and NO exposure, respectively. The overall peak HRs (95% CI) of PM2.5, O3, SO2 and NO were 1.145 (1.139-1.152), 1.153 (1.145-1.161), 1.909 (1.839-1.982) and 1.312 (1.259-1.367), respectively, and there was a synergistic effect with pneumonia on the risk of PTB. CONCLUSIONS: A strong association was found between past episodes of PN and the future risk of PTB. In addition, air pollutants including PM2.5, SO2, O3 and NO, together with previous episodes of PN, had both long-term and short-term impact on the incidence of PTB.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neumonía , Tuberculosis Pulmonar , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Estudios de Seguimiento , Humanos , Material Particulado/análisis , Neumonía/inducido químicamente , Neumonía/epidemiología , Estudios Retrospectivos , Taiwán/epidemiología , Tuberculosis Pulmonar/epidemiologíaRESUMEN
BACKGROUND: Hyperkalemia is a critical condition, especially in intensive care units. So far, there have been no accurate and noninvasive methods for recognizing hyperkalemia events on ambulatory electrocardiogram monitors. OBJECTIVE: This study aimed to improve the accuracy of hyperkalemia predictions from ambulatory electrocardiogram (ECG) monitors using a personalized transfer learning method; this would be done by training a generic model and refining it with personal data. METHODS: This retrospective cohort study used open source data from the Waveform Database Matched Subset of the Medical Information Mart From Intensive Care III (MIMIC-III). We included patients with multiple serum potassium test results and matched ECG data from the MIMIC-III database. A 1D convolutional neural network-based deep learning model was first developed to predict hyperkalemia in a generic population. Once the model achieved a state-of-the-art performance, it was used in an active transfer learning process to perform patient-adaptive heartbeat classification tasks. RESULTS: The results show that by acquiring data from each new patient, the personalized model can improve the accuracy of hyperkalemia detection significantly, from an average of 0.604 (SD 0.211) to 0.980 (SD 0.078), when compared with the generic model. Moreover, the area under the receiver operating characteristic curve level improved from 0.729 (SD 0.240) to 0.945 (SD 0.094). CONCLUSIONS: By using the deep transfer learning method, we were able to build a clinical standard model for hyperkalemia detection using ambulatory ECG monitors. These findings could potentially be extended to applications that continuously monitor one's ECGs for early alerts of hyperkalemia and help avoid unnecessary blood tests.
Asunto(s)
Hiperpotasemia , Humanos , Hiperpotasemia/diagnóstico , Hiperpotasemia/epidemiología , Estudios Retrospectivos , Medicina de Precisión , Unidades de Cuidados Intensivos , Electrocardiografía , Aprendizaje AutomáticoRESUMEN
Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered.
RESUMEN
Data from the World Health Organisation show that the global incidence of dengue infection has risen drastically, with an estimated 400 million cases of dengue infection occurring annually. Despite this worrying trend, there is still no therapeutic treatment available. Herein, we investigated short peptide fragments with a varying total number of amino acid residues (peptide fragments) from previously reported dengue virus type 2 (DENV2) peptide-based inhibitors, DN58wt (GDSYIIIGVEPGQLKENWFKKGSSIGQMF), DN58opt (TWWCFYFCRRHHPFWFFYRHN), DS36wt (LITVNPIVTEKDSPVNIEAE), and DS36opt (RHWEQFYFRRRERKFWLFFW), aided by in silico approaches: peptide-protein molecular docking and 100 ns of molecular dynamics (MD) simulation via molecular mechanics using Poisson-Boltzmann surface area (MMPBSA) and molecular mechanics generalised Born surface area (MMGBSA) methods. A library of 11,699 peptide fragments was generated, subjected to in silico calculation, and the candidates with the excellent binding affinity and shown to be stable in the DI-DIII binding pocket of DENV2 envelope (E) protein were determined. Selected peptides were synthesised using conventional Fmoc solid-phase peptide chemistry, purified by RP-HPLC, and characterised using LCMS. In vitro studies followed, to test for the peptides' toxicity and efficacy in inhibiting the DENV2 growth cycle. Our studies identified the electrostatic interaction (from free energy calculation) to be the driving stabilising force for the E protein-peptide interactions. Five key E protein residues were also identified that had the most interactions with the peptides: (polar) LYS36, ASN37, and ARG350, and (nonpolar) LEU351 and VAL354; these residues might play crucial roles in the effective binding interactions. One of the peptide fragments, DN58opt_8-13 (PFWFFYRH), showed the best inhibitory activity, at about 63% DENV2 plague reduction, compared with no treatment. This correlates well with the in silico studies in which the peptide possessed the lowest binding energy (-9.0 kcal/mol) and was maintained steadily within the binding pocket of DENV2 E protein during the MD simulations. This study demonstrates the use of computational studies to expand research on lead optimisation of antiviral peptides, thus explaining the inhibitory potential of the designed peptides.
Asunto(s)
Virus del Dengue , Dengue , Dengue/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/farmacología , Péptidos/químicaRESUMEN
BACKGROUND: During autophagy defense against invading microbes, certain lipid types are indispensable for generating specialized membrane-bound organelles. The lipid composition of autophagosomes remains obscure, as does the issue of how specific lipids and lipid-associated enzymes participate in autophagosome formation and maturation. Helicobacter pylori is auxotrophic for cholesterol and converts cholesterol to cholesteryl glucoside derivatives, including cholesteryl 6'-O-acyl-α-D-glucoside (CAG). We investigated how CAG and its biosynthetic acyltransferase assist H. pylori to escape host-cell autophagy. METHODS: We applied a metabolite-tagging method to obtain fluorophore-containing cholesteryl glucosides that were utilized to understand their intracellular locations. H. pylori 26695 and a cholesteryl glucosyltransferase (CGT)-deletion mutant (ΔCGT) were used as the standard strain and the negative control that contains no cholesterol-derived metabolites, respectively. Bacterial internalization and several autophagy-related assays were conducted to unravel the possible mechanism that H. pylori develops to hijack the host-cell autophagy response. Subcellular fractions of H. pylori-infected AGS cells were obtained and measured for the acyltransferase activity. RESULTS: The imaging studies of fluorophore-labeled cholesteryl glucosides pinpointed their intracellular localization in AGS cells. The result indicated that CAG enhances the internalization of H. pylori in AGS cells. Particularly, CAG, instead of CG and CPG, is able to augment the autophagy response induced by H. pylori. How CAG participates in the autophagy process is multifaceted. CAG was found to intervene in the degradation of autophagosomes and reduce lysosomal biogenesis, supporting the idea that intracellular H. pylori is harbored by autophago-lysosomes in favor of the bacterial survival. Furthermore, we performed the enzyme activity assay of subcellular fractions of H. pylori-infected AGS cells. The analysis showed that the acyltransferase is mainly distributed in autophago-lysosomal compartments. CONCLUSIONS: Our results support the idea that the acyltransferase is mainly distributed in the subcellular compartment consisting of autophagosomes, late endosomes, and lysosomes, in which the acidic environment is beneficial for the maximal acyltransferase activity. The resulting elevated level of CAG can facilitate bacterial internalization, interfere with the autophagy flux, and causes reduced lysosomal biogenesis.
Asunto(s)
Aciltransferasas/metabolismo , Colesterol/análogos & derivados , Infecciones por Helicobacter/fisiopatología , Helicobacter pylori/fisiología , Lisosomas/fisiología , Animales , Colesterol/biosíntesis , Infecciones por Helicobacter/enzimología , Infecciones por Helicobacter/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos EspecíficosRESUMEN
Synthesis of type I LacNAc (Galß1 â 3GlcNAc) oligosaccharides usually suffers from low yields. We herein report the efficient synthesis of type I LacNAc oligosaccharides by chemoselective glycosylation. With 16 relative reactivity values (RRVs) measured thiotoluenyl-linked disaccharide donors and acceptors, chemoselective glycosylations were investigated to obtain optimal conditions. In these reactions, the RRV difference between the donors and acceptors had to be more than 6311 to obtain type I LacNAc tetrasaccharides in 72-86% yields, with minimal occurrence of aglycon transfer. The threshold of RRV difference was further applied to plan the synthesis of longer glycans. Because it is challenging to measure the RRVs of tetrasaccharides, anomeric proton chemical shifts were utilized to predict the corresponding RRVs, which consequently explained the outcome of glycosylations for the synthesis of type I LacNAc hexasaccharides. The result supported the idea that elongation of glycan chains has to proceed from the reducing to the nonreducing end for a better yield.
RESUMEN
The 1,3-enyne moiety is commonly found in cyclohexanoid natural products produced by endophytic and plant pathogenic fungi. Asperpentyn (1) is a 1,3-enyne-containing cyclohexanoid terpenoid isolated from Aspergillus and Pestalotiopsis. The genetic basis and biochemical mechanism of 1,3-enyne biosynthesis in 1, and other natural products containing this motif, has remained enigmatic despite their potential ecological roles. Identified here is the biosynthetic gene cluster and characterization of two crucial enzymes in the biosynthesis of 1. A P450 monooxygenase that has a dual function, to first catalyze dehydrogenation of the prenyl chain to generate a cis-diene intermediate and then serve as an acetylenase to yield an alkyne moiety, and thus the 1,3-enyne, was discovered. A UbiA prenyltransferase was also characterized and it is unusual in that it favors transferring a five-carbon prenyl chain, rather than a polyprenyl chain, to a p-hydroxybenzoic acid acceptor.
Asunto(s)
Alquinos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Dimetilaliltranstransferasa/metabolismo , Proteínas Fúngicas/metabolismo , Terpenos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Dimetilaliltranstransferasa/genética , Proteínas Fúngicas/genética , Hongos/enzimología , Hongos/genética , Hongos/metabolismo , Estructura Molecular , Familia de MultigenesRESUMEN
Galectin-8, a beta-galactoside-binding lectin, is upregulated in the gastric tissues of rhesus macaques infected with Helicobacter pylori. In this study, we found that H. pylori infection triggers intracellular galectin-8 aggregation in human-derived AGS gastric epithelial cells, and that these aggregates colocalize with lysosomes. Notably, this aggregation is markedly reduced following the attenuation of host O-glycan processing. This indicates that H. pylori infection induces lysosomal damage, which in turn results in the accumulation of cytosolic galectin-8 around damaged lysosomes through the recognition of exposed vacuolar host O-glycans. H. pylori-induced galectin-8 aggregates also colocalize with autophagosomes, and galectin-8 ablation reduces the activation of autophagy by H. pylori. This suggests that galectin-8 aggregates may enhance autophagy activity in infected cells. We also observed that both autophagy and NDP52, an autophagy adapter, contribute to the augmentation of galectin-8 aggregation by H. pylori. Additionally, vacuolating cytotoxin A, a secreted H. pylori cytotoxin, may contribute to the increased galectin-8 aggregation and elevated autophagy response in infected cells. Collectively, these results suggest that H. pylori promotes intracellular galectin-8 aggregation, and that galectin-8 aggregation and autophagy may reciprocally regulate each other during infection.
Asunto(s)
Células Epiteliales/metabolismo , Galectinas/metabolismo , Mucosa Gástrica/metabolismo , Helicobacter pylori/metabolismo , Lisosomas/metabolismo , Polisacáridos/metabolismo , Autofagia , Mucosa Gástrica/patología , Humanos , Agregado de ProteínasRESUMEN
Galectins are ß-galactoside-binding animal lectins primarily found in the cytosol, while their carbohydrate ligands are mainly distributed in the extracellular space. Cytosolic galectins are anticipated to accumulate on damaged endocytic vesicles through binding to glycans initially displayed on the cell surface and subsequently located in the lumen of the vesicles, and this can be followed by cellular responses. To facilitate elucidation of the mechanism underlying this process, we adopted a model system involving induction of endocytic vesicle damage with light that targets the endocytosed amphiphilic photosensitizer disulfonated aluminum phthalocyanine. We demonstrate that the levels of galectins around damaged endosomes are dependent on the composition of carbohydrates recognized by the proteins. By super resolution imaging, galectin-3 and galectin-8 aggregates were found to be distributed in distinct microcompartments. Importantly, galectin accumulation is significantly affected when cell surface glycans are altered. Furthermore, accumulated galectins can direct autophagy adaptor proteins toward damaged endocytic vesicles, which are also significantly affected following alteration of cell surface glycans. We conclude that cytosolic galectins control cellular responses reflect dynamic modifications of cell surface glycans.
Asunto(s)
Carbohidratos/química , Galectinas/metabolismo , Células A549 , Animales , Células CHO , Comunicación Celular , Células Cultivadas , Cricetulus , Endosomas/metabolismo , Galectinas/química , HumanosRESUMEN
A general strategy for the diverse synthesis of ten disaccharide aminoglycosides, including natural 2-trehalosamine (1), 3-trehalosamine (2), 4-trehalosamine (3), and neotrehalosyl 3,3'-diamine (8) and synthetic aminoglycosides 4-7, 9, and 10, has been developed. The aminoglycoside compounds feature different anomeric configurations and numbers of amino groups. The key step for the synthesis was the glycosylation coupling of a stereodirecting donor with a configuration-stable TMS glycoside acceptor. Either the donor or acceptor could be substituted with an azido group. The aminoglycosides prepared in the present study were characterized by 1D and 2D NMR spectroscopy.
Asunto(s)
Amino Azúcares/síntesis química , Aminoglicósidos/síntesis química , Productos Biológicos/síntesis química , Disacáridos/síntesis química , Amino Azúcares/química , Aminoglicósidos/química , Productos Biológicos/química , Conformación de Carbohidratos , Disacáridos/químicaRESUMEN
BACKGROUND: Dengue fever (DF) is the most rapidly spreading mosquito-borne viral disease. Practical vaccines or specific therapeutics are still expected. Environmental factors and genetic factors affect the susceptibility of Dengue virus (DV) infection. Asthma is a common allergic disease, with house dust mites (HDMs) being the most important allergens. Asthmatic patients are susceptible to several microorganism infections. METHODS: A nationwide population-based cohort analysis was designed to assess whether to determine whether asthma can be a risk factor for DF. RESULTS: Unexpectedly, our data from a nationwide population-based cohort revealed asthmatic patients are at a decreased risk of DF. Compared to patients without asthma, the hazard ratio (HR) for DF in patients with asthma was 0.166 (95% CI: 0.118-0.233) after adjustment for possible confounding factors. In the age stratification, the adjusted HR for DF in young adult patients with asthma was 0.063. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) of dendritic cells (DCs) is an important entry for DV. Through another in vitro experiment, we found that HDM can diminish surface expression of DC-SIGN in monocyte-derived DCs and further decrease the cellular entry of DV. CONCLUSIONS: Decreased DC-SIGN expression in DCs of allergic asthmatic patient may be one of many factors for them to be protected against DF. This could implicate the potential for DC-SIGN modulation as a candidate target for designing therapeutic strategies for DF.
Asunto(s)
Asma/complicaciones , Asma/epidemiología , Dengue/epidemiología , Dengue/etiología , Susceptibilidad a Enfermedades , Vigilancia de la Población , Adolescente , Adulto , Alérgenos/inmunología , Asma/diagnóstico , Asma/etiología , Biomarcadores , Moléculas de Adhesión Celular/inmunología , Niño , Preescolar , Estudios de Cohortes , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Dengue/diagnóstico , Dengue/virología , Femenino , Humanos , Lactante , Recién Nacido , Lectinas Tipo C/inmunología , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/metabolismo , Receptores de Superficie Celular/inmunología , Adulto JovenRESUMEN
This work reports the one-pot enzymatic cascade that completely converts l-arabinose to l-ribulose using four reactions catalyzed by pyranose 2-oxidase (P2O), xylose reductase, formate dehydrogenase, and catalase. As wild-type P2O is specific for the oxidation of six-carbon sugars, a pool of P2O variants was generated based on rational design to change the specificity of the enzyme towards the oxidation of l-arabinose at the C2-position. The variant T169G was identified as the best candidate, and this had an approximately 40-fold higher rate constant for the flavin reduction (sugar oxidation) step, as compared to the wild-type enzyme. Computational calculations using quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) showed that this improvement is due to a decrease in the steric effects at the axial C4-OH of l-arabinose, which allows a reduction in the distance between the C2-H and flavin N5, facilitating hydride transfer and enabling flavin reduction.