Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ann Allergy Asthma Immunol ; 133(1): 33-42, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38492772

RESUMEN

IgE signaling through its high-affinity receptor FcεRI is central to the pathogenesis of numerous allergic disorders. Oral inhibitors of Bruton's tyrosine kinase (BTKis), which are currently Food and Drug Administration-approved for treating B cell malignancies, broadly inhibit the FcεRI pathway in human mast cells and basophils, and therefore may be effective allergen-independent therapies for a variety of allergic diseases. The application of these drugs to the allergy space was previously limited by the low kinase selectivity and subsequent toxicities of early-generation compounds. Fortunately, next-generation, highly selective BTKis in clinical development appear to have more favorable risk-benefit profiles, and their likelihood of being Food and Drug Administration-approved for an allergy indication is increasing. Recent clinical trials have indicated the remarkable and rapid efficacy of the second-generation BTKi acalabrutinib in preventing clinical reactivity to peanut ingestion in adults with peanut allergy. In addition, next-generation BTKis including remibrutinib effectively reduce disease activity in patients with antihistamine-refractory chronic spontaneous urticaria. Finally, several BTKis are currently under investigation in early clinical trials for atopic dermatitis and asthma. In this review, we summarize recent data supporting the use of these drugs as novel therapies in food allergy, anaphylaxis, urticaria, and other allergic disorders. We also discuss safety data derived from trials using both short-term and chronic dosing of BTKis.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Inhibidores de Proteínas Quinasas , Humanos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Hipersensibilidad/tratamiento farmacológico , Hipersensibilidad/inmunología , Animales , Receptores de IgE/inmunología , Receptores de IgE/antagonistas & inhibidores , Benzamidas/uso terapéutico , Pirazinas
2.
J Exp Med ; 219(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36098746

RESUMEN

IgE mediates allergic responses by coating mast cell or basophil surfaces and inducing degranulation upon binding a specific allergen. IgE can also be spontaneously produced in the absence of foreign allergens; yet the origin, regulation, and functions of such "natural" IgE still remain largely unknown. Here, we find that glucocorticoids enhance the production of IgE in B cells both in vivo and ex vivo without antigenic challenge. Such IgE production is promoted by B cell-intrinsic glucocorticoid receptor signaling that reinforces CD40 signaling and synergizes with the IL-4/STAT6 pathway. In addition, we found that rare B cells in the mesenteric lymph nodes are responsible for the production of glucocorticoid-inducible IgE. Furthermore, locally produced glucocorticoids in the gut may induce natural IgE during perturbations of gut homeostasis, such as dysbiosis. Notably, mice preemptively treated with glucocorticoids were protected from subsequent pathogenic anaphylaxis. Together, our results suggest that glucocorticoids, classically considered to be broadly immunosuppressive, have a selective immunostimulatory role in B cells.


Asunto(s)
Anafilaxia , Glucocorticoides , Alérgenos , Anafilaxia/metabolismo , Animales , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Inmunoglobulina E/metabolismo , Mastocitos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA