Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Head Neck ; 45(11): 2798-2808, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642216

RESUMEN

BACKGROUND: To explore the value of early oral nutritional supplements (ONS) in patients with nasopharyngeal carcinoma (NPC) treated with concurrent chemoradiotherapy (CCRT). METHODS: Patients with newly diagnosed II-IVA stage NPC were analyzed and divided into Early and Routine ONS groups according to whether they received early ONS at the beginning of CCRT. Changes in nutritional indicators, incidence of treatment-related toxicity, radiation interruption, and completion of CCRT were compared. RESULTS: In total, 161 patients with NPC were analyzed, including 72 in the Early ONS group and 89 in the Routine ONS group. Multivariate analysis showed that early ONS was an independent protective factor for concurrent chemotherapy ≥2 cycles, and a protective factor against ≥grade 3 radiation-induced oral mucositis (RIOM) and weight loss >5%. In stage III-IVA patients, early ONS was beneficial in decreasing the risk of severe malnutrition. CONCLUSIONS: Early ONS can improve nutritional outcomes, reduce RIOM, and enhance treatment adherence.


Asunto(s)
Neoplasias Nasofaríngeas , Estomatitis , Humanos , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Quimioradioterapia/efectos adversos , Pérdida de Peso , Estomatitis/etiología , Estomatitis/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
2.
ACS Omega ; 7(27): 23467-23478, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847335

RESUMEN

Phenol and its chemical derivatives serve as essential chemical materials are indispensable for the synthesis of many kinds of polymers. However, they are highly toxic, carcinogenic, difficult to be degraded biologically, and often found in aqueous effluents. Recovery of hazardous phenol from wastewater remains a daunting challenge. Herein, we prepared a hybrid membrane containing polyether block amide (PEBA) matrix and HZIF-8 fillers. To improve the compatibility between ZIF-8 and PEBA, ZIF-8 was modified by using polystyrene (PS) as a template to prepare porous HZIF-8. ZIF-8, composed of zinc nodes linked by the imidazole ring skeleton, is a kind of inorganic material with high hydrothermal stability, ordered pores, and hydrophobic microporous surfaces, which has a wide range of applications in membrane separation. The separation performance of the PEBA/HZIF-8 based membranes for phenol/water is improved due to the presence of PS on the surface of HZIF-8 and the imidazole ring skeleton in ZIF-8, which enhance the π-π interaction between HZIF-8 and phenol molecules. The effects of HZIF-8 content, feed phenol concentration, and feed temperature on the pervaporation performance of PEBA/HZIF-8 membranes were further investigated. The results showed that the pervaporation performance of the PEBA/HZIF-8-10 membrane was promising with a separation factor of 80.89 and permeate flux of 247.70 g/m2·h under the feed phenol concentration of 0.2 wt % at 80 °C. In addition, the PEBA/HZIF-8-10 membrane presented excellent stability, which has great prospect for practical application in phenol recovery from waste water.

3.
Dalton Trans ; 51(33): 12736-12745, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35946555

RESUMEN

Research shows that redox complementarity and synergism among the ingredients of heterogeneous catalysts can enhance the performance of the catalyst. In this research, a porous CuMoO4@Co3O4 nanosheet electrocatalyst is prepared, which is uniformly decorated on nickel foam (NF) by hydrothermal reactions and the impregnation method. The CuMoO4@Co3O4 is an efficient bifunctional catalyst with prominent electrocatalytic activity and durability. It requires overpotentials of only 54 and 251 mV to obtain current densities of 10 and 50 mA cm-2 for the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER) in 1.0 mol L-1 KOH, corresponding to Tafel slope values of 98.8 and 87.4 mV dec-1, respectively. Furthermore, the CuMoO4@Co3O4 shows excellent stability of 120 h chronopotentiometry at a current density of 100 mA cm-2 for the HER/OER. Notably, an alkaline electrolyzer (with CuMoO4@Co3O4 as the HER and OER electrodes) can deliver a current density of 10 mA cm-2 at a low voltage of 1.51 V. The catalytic activity of CuMoO4@Co3O4 can be attributed to the structure of the porous nanosheets and the synergistic effect between CuMoO4 and Co3O4.

4.
Dalton Trans ; 51(48): 18528-18541, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36444658

RESUMEN

The development of electrode materials with a high specific capacitance, power density, and long-term stability is essential and remains a challenge for developing supercapacitors. Cobalt sulfides (CoS2) are considered one of the most promising and widely studied electrode materials for supercapacitors. Herein, CoS2 and hierarchical porous carbon derived from Pien Tze Huang waste are assembled into a cobalt sulfide/carbon (CoS2/PZH) matrix composite using a one-step hydrothermal method to resolve the challenges of supercapacitors. The resulting CoS2/PZH composite material exhibits a hierarchical porous structure with hollow CoS2 embedded in a PZH framework. The uniform dispersion of the hierarchical porous structure CoS2/PZH is achieved due to the PZH framework, while the uniform decoration of the porous PZH with the hollow CoS2 prevents the PZH from stacking easily. Moreover, the excellent synergistic effect of the hierarchical porous and hollow structure of CoS2/PZH can shorten the electron/ion diffusion channels, expose additional active sites, and provide stable structures for subsequent reactions. As a result, the CoS2/PZH composite material displays a high initial specific capacity of 447.5 F g-1 at 0.5 A g-1, a high energy density of 22.38 W h kg-1, and long-term cycling stability (a retention rate of 92.3% over 10 000 cycles at 5 A g-1).

5.
ACS Omega ; 6(4): 2675-2685, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553885

RESUMEN

A two-dimensional molybdenum disulfide (MoS2) nanosheet, as a new type of inorganic material with high hydrophobicity and excellent physicochemical stability, holds great application potential in the preparation of a high separation performance organic-inorganic hybrid membrane. In this work, high hydrophobic MoS2 was embedded in hydrophobic polyether copolymer block amide (PEBA) to prepare PEBA/MoS2 organic-inorganic hybrid membranes. The structure, morphology, and hydrophobicity of the hybrid membrane were characterized by scanning electron microscopy, thermogravimetric analysis, contact angle goniometry, X-ray diffraction, infrared spectroscopy analysis, and atomic force microscopy. The effect of embedding of MoS2 on the swelling degree and pervaporation separation performance of the PEBA/MoS2 hybrid membrane was studied with a 1.0 wt % pyridine dilute solution. The results indicated that with increasing the MoS2 content, the separation factor of PEBA/MoS2 increased first and then decreased, while it showed a downward trend in the permeation flux. When the MoS2 content in the PEBA/MoS2 hybrid membrane was 10.0 wt %, the permeation flux was 83.4 g m-2 h-1 (decreased by 21.5% compared with the pure PEBA membrane), and the separation factor reached a maximum value of 11.11 (increased by 37.6% compared with the pure PEBA membrane). Meanwhile, the effects of feed temperature on the pervaporation separation performance of PEBA/MoS2 hybrid membranes were also studied. In addition, as the PEBA/MoS2 hybrid membrane has excellent thermal stability, it is expected to be a promising material for recovering pyridine from wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA