Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443160

RESUMEN

Aerobic glycolysis (AG), that is, the nonoxidative metabolism of glucose, contributes significantly to anabolic pathways, rapid energy generation, task-induced activity, and neuroprotection; yet high AG is also associated with pathological hallmarks such as amyloid-ß deposition. An important yet unresolved question is whether and how the metabolic benefits and risks of brain AG is structurally shaped by connectome wiring. Using positron emission tomography and magnetic resonance imaging techniques as well as computational models, we investigate the relationship between brain AG and the macroscopic connectome. Specifically, we propose a weighted regional distance-dependent model to estimate the total axonal projection length of a brain node. This model has been validated in a macaque connectome derived from tract-tracing data and shows a high correspondence between experimental and estimated axonal lengths. When applying this model to the human connectome, we find significant associations between the estimated total axonal projection length and AG across brain nodes, with higher levels primarily located in the default-mode and prefrontal regions. Moreover, brain AG significantly mediates the relationship between the structural and functional connectomes. Using a wiring optimization model, we find that the estimated total axonal projection length in these high-AG regions exhibits a high extent of wiring optimization. If these high-AG regions are randomly rewired, their total axonal length and vulnerability risk would substantially increase. Together, our results suggest that high-AG regions have expensive but still optimized wiring cost to fulfill metabolic requirements and simultaneously reduce vulnerability risk, thus revealing a benefit-risk balancing mechanism in the human brain.


Asunto(s)
Aerobiosis/fisiología , Encéfalo/metabolismo , Glucólisis/fisiología , Adulto , Conectoma/métodos , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/metabolismo , Vías Nerviosas , Tomografía de Emisión de Positrones
2.
Hum Brain Mapp ; 44(8): 3072-3083, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36929676

RESUMEN

While iron over-accumulation has been reported in late stage Alzheimer's disease (AD), whether this occurs early in the asymptomatic stage of AD remains unknown. We aimed to assess brain iron levels in asymptomatic AD using quantitative MR relaxometry of effective transverse relaxation rate (R2*) and longitudinal relaxation rate (R1), and recruited 118 participants comprised of three groups including healthy young participants, and cognitively normal older individuals without or with positive AD biomarkers based on cerebrospinal fluid (CSF) proteomics analysis. Compared with the healthy young group, increased R2* was found in widespread cortical and subcortical regions in the older groups. Further, significantly higher levels of R2* were found in the cognitively normal older subjects with positive CSF AD biomarker (i.e., asymptomatic AD) compared with those with negative AD biomarker in subcortical regions including the left and right caudate, left and right putamen, and left and right globus pallidus (p < .05 for all regions), suggesting increased iron content in these regions. Subcortical R2* of some regions was found to significantly correlate with CSF AD biomarkers and neuropsychological assessments of visuospatial functions. In conclusion, R2* could be a valuable biomarker for studying early pathophysiological changes in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Encéfalo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Hierro , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo
3.
Cereb Cortex ; 28(12): 4179-4194, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136110

RESUMEN

Neuropsychiatric disorders are increasingly conceptualized as disconnection syndromes that are associated with abnormal network integrity in the brain. However, whether different neuropsychiatric disorders show commonly dysfunctional connectivity architectures in large-scale brain networks remains largely unknown. Here, we performed a meta-connectomic study to identify disorder-related functional modules and brain regions by combining meta-analyses of 182 published resting-state functional MRI studies in 11 neuropsychiatric disorders and graph-theoretical analyses of 3 independent resting-state functional MRI datasets with healthy and diseased populations (Alzheimer's disease and major depressive disorder [MDD]). Three major functional modules, the default mode, frontoparietal, and sensorimotor networks were commonly abnormal across disorders. Moreover, most of the disorders preferred to target the network connector nodes that were primarily involved in intermodule communications and multiple cognitive components. Apart from these common dysfunctions, different brain disorders were associated with specific alterations in network modules and connector regions. Finally, these meta-connectomic findings were confirmed by two empirical example cases of Alzheimer's disease and MDD. Collectively, our findings shed light on the shared biological mechanisms of network dysfunctions of diverse disorders and have implications for clinical diagnosis and treatment from a network perspective.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Conectoma/métodos , Trastorno Depresivo Mayor/fisiopatología , Adulto , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Adulto Joven
4.
Hum Brain Mapp ; 39(4): 1647-1663, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29314415

RESUMEN

Very little is known regarding whether structural hubs of human brain networks that enable efficient information communication may be classified into different categories. Using three multimodal neuroimaging data sets, we construct individual structural brain networks and further identify hub regions based on eight widely used graph-nodal metrics, followed by comprehensive characteristics and reproducibility analyses. We show the three categories of structural hubs in the brain network, namely, aggregated, distributed, and connector hubs. Spatially, these distinct categories of hubs are primarily located in the default-mode system and additionally in the visual and limbic systems for aggregated hubs, in the frontoparietal system for distributed hubs, and in the sensorimotor and ventral attention systems for connector hubs. These categorized hubs exhibit various distinct characteristics to support their differentiated roles, involving microstructural organization, wiring costs, topological vulnerability, functional modular integration, and cognitive flexibility; moreover, these characteristics are better in the hubs than nonhubs. Finally, all three categories of hubs display high across-session spatial similarities and act as structural fingerprints with high predictive rates (100%, 100%, and 84.2%) for individual identification. Collectively, we highlight three categories of brain hubs with differential microstructural, functional and, cognitive associations, which shed light on topological mechanisms of the human connectome.


Asunto(s)
Identificación Biométrica , Encéfalo/diagnóstico por imagen , Conectoma , Adulto , Identificación Biométrica/métodos , Encéfalo/anatomía & histología , Encéfalo/fisiología , Imagen de Difusión Tensora , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Imagen Multimodal , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Descanso , Adulto Joven
5.
Hum Brain Mapp ; 39(11): 4545-4564, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29999567

RESUMEN

Recently, functional connectome studies based on resting-state functional magnetic resonance imaging (R-fMRI) and graph theory have greatly advanced our understanding of the topological principles of healthy and diseased brains. However, how different strategies for R-fMRI data preprocessing and for connectome analyses jointly affect topological characterization and contrastive research of brain networks remains to be elucidated. Here, we used two R-fMRI data sets, a healthy young adult data set and an Alzheimer's disease (AD) patient data set, and up to 42 analysis strategies to comprehensively investigate the joint influence of three key factors (global signal regression, regional parcellation schemes, and null network models) on the topological analysis and contrastive research of whole-brain functional networks. At the global level, we first found that these three factors affected not only the quantitative values but also the individual variability profile in small-world related metrics and modularity, wherein global signal regression exhibited the predominant influence. Moreover, strategies without global signal regression and with topological randomization null model enhanced the sensitivity of the detection of differences between AD and control groups in small-worldness and modularity. At the nodal level, strategies of global signal regression dominantly influenced the spatial distribution of both hubs and between-group differences in terms of nodal degree centrality. Together, we highlight the remarkable joint influence of global signal regression, regional parcellation schemes and null network models on functional connectome analyses in both health and diseases, which may provide guidance for the choice of analysis strategies in future functional network studies.


Asunto(s)
Conectoma/métodos , Imagen por Resonancia Magnética , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología , Adulto Joven
6.
Addict Biol ; 22(1): 184-195, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26177615

RESUMEN

Neurocognitive impairment is one of the factors that put heroin abusers at greater risk for relapse, and deficits in related functional brain connections have been found. However, the alterations in structural brain connections that may underlie these functional and neurocognitive impairments remain largely unknown. In the present study, we investigated topological organization alterations in the structural network of white matter in heroin abusers and examined the relationships between the network changes and clinical measures. We acquired diffusion tensor imaging datasets from 76 heroin abusers and 78 healthy controls. Network-based statistic was applied to identify alterations in interregional white matter connectivity, and graph theory methods were used to analyze the properties of global networks. The participants also completed a battery of neurocognitive measures. One increased subnetwork characterizing widespread abnormalities in structural connectivity was present in heroin users, which mainly composed of default-mode, attentional and visual systems. The connection strength was positively correlated with increases in fractional anisotropy in heroin abusers. Intriguingly, the changes in within-frontal and within-temporal connections in heroin abusers were significantly correlated with daily heroin dosage and impulsivity scores, respectively. These findings suggest that heroin abusers have extensive abnormal white matter connectivity, which may mediate the relationship between heroin dependence and clinical measures. The increase in white matter connectivity may be attributable to the inefficient microstructure integrity of white matter. The present findings extend our understanding of cerebral structural disruptions that underlie neurocognitive and functional deficits in heroin addiction and provide circuit-level markers for this chronic disorder.


Asunto(s)
Dependencia de Heroína/fisiopatología , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología , Adulto , Estudios Transversales , Humanos , Masculino , Pruebas Neuropsicológicas
7.
Neuroimage ; 132: 542-555, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26973170

RESUMEN

Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control.


Asunto(s)
Corteza Cerebral/fisiología , Semántica , Adulto , Conectoma , Femenino , Lóbulo Frontal/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Lóbulo Temporal/fisiología , Adulto Joven
8.
Cereb Cortex ; 25(10): 3723-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25331602

RESUMEN

Alzheimer's disease (AD) is associated not only with regional gray matter damages, but also with abnormalities in functional integration between brain regions. Here, we employed resting-state functional magnetic resonance imaging data and voxel-based graph-theory analysis to systematically investigate intrinsic functional connectivity patterns of whole-brain networks in 32 AD patients and 38 healthy controls (HCs). We found that AD selectively targeted highly connected hub regions (in terms of nodal functional connectivity strength) of brain networks, involving the medial and lateral prefrontal and parietal cortices, insula, and thalamus. This impairment was connectivity distance-dependent (Euclidean), with the most prominent disruptions appearing in the long-range connections (e.g., 100-130 mm). Moreover, AD also disrupted functional connections within the default-mode, salience and executive-control modules, and connections between the salience and executive-control modules. These disruptions of hub connectivity and modular integrity significantly correlated with the patients' cognitive performance. Finally, the nodal connectivity strength in the posteromedial cortex exhibited a highly discriminative power in distinguishing individuals with AD from HCs. Taken together, our results emphasize AD-related degeneration of specific brain hubs, thus providing novel insights into the pathophysiological mechanisms of connectivity dysfunction in AD and suggesting the potential of using network hub connectivity as a diagnostic biomarker.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Conectoma/métodos , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Atrofia , Encéfalo/patología , Progresión de la Enfermedad , Femenino , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Pruebas Neuropsicológicas , Reproducibilidad de los Resultados
9.
Addict Biol ; 21(3): 657-66, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25708696

RESUMEN

Drug addiction shares common neurobiological pathways and risk genes with other psychiatric diseases, including psychosis. One of the commonly identified risk genes associated with broad psychosis has been ZNF804A. We sought to test whether psychosis risk variants in ZNF804A increase the risk of heroin addiction by modulating neurocognitive performance and gray matter volume (GMV) in heroin addiction. Using case-control genetic analysis, we compared the distribution of ZNF804A variants (genotype and haplotype) in 1035 heroin abusers and 2887 healthy subjects. We also compared neurocognitive performance (impulsivity, global cognitive ability and decision-making ability) in 224 subjects and GMV in 154 subjects based on the ZNF804A variants. We found significant differences in the distribution of ZNF804A intronic variants (rs1344706 and rs7597593) allele and haplotype frequencies between the heroin and control groups. Decision-making impairment was worse in heroin abusers who carried the ZNF804A risk allele and haplotype. Subjects who carried more risk alleles and haplotypes of ZNF804A had greater GMV in the bilateral insular cortex, right temporal cortex and superior parietal cortex. The interaction between heroin addiction and ZNF804A variants affected GMV in the left sensorimotor cortex. Our findings revealed several ZNF804A variants that were significantly associated with the risk of heroin addiction, and these variants affected decision making and GMV in heroin abusers compared with controls. The precise neural mechanisms that underlie these associations are unknown, which requires future investigations of the effects of ZNF804A on both dopamine neurotransmission and the relative increases in the volume of various brain areas.


Asunto(s)
Cognición , Toma de Decisiones , Sustancia Gris/patología , Dependencia de Heroína/genética , Factores de Transcripción de Tipo Kruppel/genética , Adulto , Alelos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , Predisposición Genética a la Enfermedad , Sustancia Gris/diagnóstico por imagen , Haplotipos , Dependencia de Heroína/psicología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/patología , Polimorfismo de Nucleótido Simple , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología
10.
Radiology ; 274(3): 841-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25356962

RESUMEN

PURPOSE: To investigate the dynamic evolution of diffusion indexes in the corticospinal tract (CST) distal to a pontine infarct by using diffusion-tensor imaging, to determine the relationship of these indexes with clinical prognosis, and to explore the structural changes in the motor pathway during recovery. MATERIALS AND METHODS: This study was approved by the institutional ethics committee, and written informed consent was obtained from each participant. Seventeen patients with pontine infarct underwent five diffusion-tensor imaging examinations during a period of 6 months (within 7 days of onset, 14, 30, 90, and 180 after onset). Fractional anisotropic values were measured in the medulla, cerebral peduncle, internal capsule, and centrum semiovale. Fractional anisotropic values of the CST in the ipsilateral side of the infarct were compared with those in the contralateral sides and those in control subjects by using the Student t test and one-way analysis of variance, and their relationships with clinical scores were analyzed by using Pearson correlation analysis. Reconstructions of the CST were performed. Structural changes of the damaged CST were followed up. RESULTS: Fractional anisotropic ratios in the CST above the pons decreased significantly compared with those in the contralateral side and those in control subjects within 7 days, on day 14, and on day 30 after onset (P < .001). Fractional anisotropic ratios above the pons on day 14 correlated positively with Fugl-Meyer scores on day 90 (r = 0.771, P < .001) and day 180 (r = 0.730, P = .001). Follow-up diffusion-tensor tractographic images showed regeneration and reorganization of the motor pathways. CONCLUSION: Secondary degeneration of the CST can be detected at diffusion-tensor imaging in the early stages after pontine infarction, which could help predict the motor outcomes. Diffusion-tensor tractography can allow detection of regeneration and reorganization of the motor pathways during recovery.


Asunto(s)
Infarto Encefálico/diagnóstico , Imagen de Difusión Tensora , Puente/irrigación sanguínea , Tractos Piramidales , Adulto , Anciano , Anisotropía , Vías Eferentes , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos
11.
IEEE Trans Med Imaging ; 43(5): 1895-1909, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38194401

RESUMEN

The human brain functional connectivity network (FCN) is constrained and shaped by the communication processes in the structural connectivity network (SCN). The underlying communication mechanism thus becomes a critical issue for understanding the formation and organization of the FCN. A number of communication models supported by different routing strategies have been proposed, with shortest path (SP), random diffusion (DIF), and spatial navigation (NAV) as the most typical, respectively requiring network global knowledge, local knowledge, and both for path seeking. Yet these models all assumed every brain region to use one routing strategy uniformly, ignoring convergent evidence that supports the regional heterogeneity in both terms of biological substrates and functional roles. In this regard, the current study developed a hybrid communication model that allowed each brain region to choose a routing strategy from SP, DIF, and NAV independently. A genetic algorithm was designed to uncover the underlying region-wise hybrid routing strategy (namely HYB). The HYB was found to outperform the three typical routing strategies in predicting FCN and facilitating robust communication. Analyses on HYB further revealed that brain regions in lower-order functional modules inclined to route signals using global knowledge, while those in higher-order functional modules preferred DIF that requires only local knowledge. Compared to regions that used global knowledge for routing, regions using DIF had denser structural connections, participated in more functional modules, but played a less dominant role within modules. Together, our findings further evidenced that hybrid routing underpins efficient SCN communication and locally heterogeneous structure-function coupling.


Asunto(s)
Algoritmos , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Masculino , Conectoma/métodos , Femenino
12.
Neuroimage ; 65: 476-87, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23073234

RESUMEN

The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely control their movements and wonder how the brain structure and function of these elite athletes differ from those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and fourteen matched controls, constructed their anatomical networks, and calculated the topological properties of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges with increased connection density in the champions were linked to brain regions that are located in the sensorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly greater global and local efficiency but shorter characteristic path length in the anatomical networks of the champions compared with the controls. Moreover, in the champions we found a significantly higher nodal degree and greater regional efficiency in several brain regions that correspond to motor and attention functions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and temporal lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatomical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to explain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms that distinguish expert gymnasts from novices.


Asunto(s)
Mapeo Encefálico , Encéfalo/anatomía & histología , Gimnasia/fisiología , Vías Nerviosas/anatomía & histología , Adolescente , Adulto , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Destreza Motora/fisiología , Adulto Joven
13.
Curr Med Imaging ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031789

RESUMEN

INTRODUCTION: We explored the relationship between secondary degeneration of white matter (WM) tracts and motor outcomes after left basal ganglia infarction and investigated alterations in the diffusion indices of WM tracts in distal areas. METHODS: Clinical neurological evaluations were accomplished using the Fugl-Meyer scale (FMS). Then, the fractional anisotropy (FA) of the bilateral superior corona radiata (SCR), cerebral peduncle (CP), corticospinal tracts (CST), and corpus callosum (CC) were measured in all patients and control subjects. RESULTS: Regional-based analysis revealed decreased FA values in the ipsilesional SCR, CP, and CST of the patients, compared to the control subjects at 5- time points. The relative FA (rFA) values of the SCR, CP, and CST decreased progressively with time, the lowest values recorded at 90 days before increasing slightly at 180 days after stroke. Compared to the contralateral areas, the FA values of the ipsilesional SCR and CST areas were significantly decreased (P=0.023), while those of the CP decreased at 180 days (P=0.008). Compared with the values at 7 days, the rFA values of the ipsilesional SCR and CP areas were significantly reduced at 14, 30, and 90 days, while those in the CST area were significantly reduced at 14, 90, and 180 days. The CP rFA value at 7 days correlated positively with the FM scores at 180 days (r=0.469, P=0.037). CONCLUSION: This study provides an objective, comprehensive, and automated protocol for detecting secondary degeneration of WM, which is important in understanding rehabilitation mechanisms after stroke.

14.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37745373

RESUMEN

The functional connectome of the human brain represents the fundamental network architecture of functional interdependence in brain activity, but its normative growth trajectory across the life course remains unknown. Here, we aggregate the largest, quality-controlled multimodal neuroimaging dataset from 119 global sites, including 33,809 task-free fMRI and structural MRI scans from 32,328 individuals ranging in age from 32 postmenstrual weeks to 80 years. Lifespan growth charts of the connectome are quantified at the whole cortex, system, and regional levels using generalized additive models for location, scale, and shape. We report critical inflection points in the non-linear growth trajectories of the whole-brain functional connectome, particularly peaking in the fourth decade of life. Having established the first fine-grained, lifespan-spanning suite of system-level brain atlases, we generate person-specific parcellation maps and further show distinct maturation timelines for functional segregation within different subsystems. We identify a spatiotemporal gradient axis that governs the life-course growth of regional connectivity, transitioning from primary sensory cortices to higher-order association regions. Using the connectome-based normative model, we demonstrate substantial individual heterogeneities at the network level in patients with autism spectrum disorder and patients with major depressive disorder. Our findings shed light on the life-course evolution of the functional connectome and serve as a normative reference for quantifying individual variation in patients with neurological and psychiatric disorders.

15.
Artículo en Inglés | MEDLINE | ID: mdl-36037449

RESUMEN

Inferring resting-state functional connectivity (FC) from anatomical brain wiring, known as structural connectivity (SC), is of enormous significance in neuroscience for understanding biological neuronal networks and treating mental diseases. Both SC and FC are networks where the nodes are brain regions, and in SC, the edges are the physical fiber nerves among the nodes, while in FC, the edges are the nodes' coactivation relations. Despite the importance of SC and FC, until very recently, the rapidly growing research body on this topic has generally focused on either linear models or computational models that rely heavily on heuristics and simple assumptions regarding the mapping between FC and SC. However, the relationship between FC and SC is actually highly nonlinear and complex and contains considerable randomness; additional factors, such as the subject's age and health, can also significantly impact the SC-FC relationship and hence cannot be ignored. To address these challenges, here, we develop a novel SC-to-FC generative adversarial network (SF-GAN) framework for mapping SC to FC, along with additional metafeatures based on a newly proposed graph neural network-based generative model that is capable of learning the stochasticity. Specifically, a new graph-based conditional generative adversarial nets model is proposed, where edge convolution layers are leveraged to encode the graph patterns in the SC in the form of a graph representation. New edge deconvolution layers are then utilized to decode the representation back to FC. Additional metafeatures of subjects' profile information are integrated into the graph representation with newly designed sparse-regularized layers that can automatically select features that impact FC. Finally, we have also proposed new post hoc explainer of our SF-GAN, which can identify which subgraphs in SC strongly influence which subgraphs in FC by a new multilevel edge-correlation-guided graph clustering problem. The results of experiments conducted to test the new model confirm that it significantly outperforms existing state-of-the-art methods, with additional interpretability for identifying important metafeatures and subgraphs.

16.
CNS Neurosci Ther ; 28(5): 677-689, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35005843

RESUMEN

AIM: To investigate the directional and selective disconnection of the sensorimotor cortex (SMC) subregions in chronic stroke patients with hand dysfunction. METHODS: We mapped the resting-state fMRI effective connectivity (EC) patterns for seven SMC subregions in each hemisphere of 65 chronic stroke patients and 40 healthy participants and correlated these patterns with paretic hand performance. RESULTS: Compared with controls, patients demonstrated disrupted EC in the ipsilesional primary motor cortex_4p, ipsilesional primary somatosensory cortex_2 (PSC_2), and contralesional PSC_3a. Moreover, we found that EC values of the contralesional PSC_1 to contralesional precuneus, the ipsilesional inferior temporal gyrus to ipsilesional PSC_1, and the ipsilesional PSC_1 to contralesional postcentral gyrus were correlated with paretic hand performance across all patients. We further divided patients into partially (PPH) and completely (CPH) paretic hand subgroups. Compared with CPH patients, PPH patients demonstrated decreased EC in the ipsilesional premotor_6 and ipsilesional PSC_1. Interestingly, we found that paretic hand performance was positively correlated with seven sensorimotor circuits in PPH patients, while it was negatively correlated with five sensorimotor circuits in CPH patients. CONCLUSION: SMC neurocircuitry was selectively disrupted after chronic stroke and associated with diverse hand outcomes, which deepens the understanding of SMC reorganization.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Mano , Humanos , Imagen por Resonancia Magnética , Corteza Motora/diagnóstico por imagen , Recuperación de la Función , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
17.
J Alzheimers Dis ; 87(3): 1131-1141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431238

RESUMEN

BACKGROUND: Women account for two thirds of the prevalence and incidence of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Evidence suggest that sex may differently influence the expression of proteins amyloid-beta (Aß1-42) and tau, for which early detection is crucial in prevention of the disease. OBJECTIVE: We investigated the effect of aging and cerebrospinal fluid (CSF) levels of Aß1-42 and tau on frontal metabolites measured with proton magnetic resonance spectroscopy (MRS) in a cohort of cognitively normal older women and women with MCI. METHODS: 3T single-voxel MRS was performed on the medial frontal cortex, using Point Resolved Spectroscopy (PRESS) and Mescher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) in 120 women (age range 50-85). CSF samples of Aß1-42 and tau and scores of general cognition were also obtained. RESULTS: Levels of frontal gamma aminobutyric acid (GABA+) were predicted by age, independently of disease and CSF biomarkers. Importantly, levels of GABA+ were reduced in MCI patients. Additionally, we found that levels of N-acetylaspartate relative to myo-inositol (tNAA/mI) predicted cognition in MCI patients only and were not related to CSF biomarkers. CONCLUSION: This study is the first to demonstrate a strong association between frontal GABA+ levels and neurological aging in a sample consisting exclusively of healthy older women with various levels of CSF tau and Aß1-42 and women with MCI. Importantly, our results show no correlation between CSF biomarkers and MRS metabolites in this sample.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/psicología , Femenino , Humanos , Fragmentos de Péptidos/líquido cefalorraquídeo , Ácido gamma-Aminobutírico , Proteínas tau/metabolismo
18.
Neurobiol Aging ; 109: 22-30, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638000

RESUMEN

Elevated expression of ß-amyloid (Aß1-42) and tau are considered risk-factors for Alzheimer's disease in healthy older adults. We investigated the effect of aging and cerebrospinal fluid levels of Aß1-42 and tau on 1) frontal metabolites measured with proton magnetic resonance spectroscopy (MRS) and 2) cognition in cognitively normal older adults (n = 144; age range 50-85). Levels of frontal gamma aminobutyric acid (GABA+) and myo-inositol relative to creatine (mI/tCr) were predicted by age. Levels of GABA+ predicted cognitive performance better than mI/tCr. Additionally, we found that frontal levels of n-acetylaspartate relative to creatine (tNAA/tCr) were predicted by levels of t-tau. In cognitively normal older adults, levels of frontal GABA+ and mI/tCr are predicted by aging, with levels of GABA+ decreasing with age and the opposite for mI/tCr. These results suggest that age- and biomarker-related changes in brain metabolites are not only located in the posterior cortex as suggested by previous studies and further demonstrate that MRS is a viable tool in the study of aging and biomarkers associated with pathological aging and Alzheimer's disease.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/fisiología , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Cognición , Lóbulo Frontal/metabolismo , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/psicología , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Creatina/metabolismo , Femenino , Humanos , Inositol/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ácido gamma-Aminobutírico/metabolismo
19.
Front Aging Neurosci ; 14: 901140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034141

RESUMEN

While hippocampal atrophy and its regional susceptibility to Alzheimer's disease (AD) are well reported at late stages of AD, studies of the asymptomatic stage of AD are limited but could elucidate early stage pathophysiology as well as provide predictive biomarkers. In this study, we performed multi-modal magnetic resonance imaging (MRI) to estimate morphometry, functional connectivity, and tissue microstructure of hippocampal subfields in cognitively normal adults including those with asymptomatic AD. High-resolution resting-state functional, diffusion and structural MRI, cerebral spinal fluid (CSF), and neuropsychological evaluations were performed in healthy young adults (HY: n = 40) and healthy older adults with negative (HO-: n = 47) and positive (HO+ : n = 25) CSF biomarkers of AD. Morphometry, functional connectivity, and tissue microstructure were estimated from the structural, functional, and diffusion MRI images, respectively. Our results indicated that normal aging affected morphometry, connectivity, and microstructure in all hippocampal subfields, while the subiculum and CA1-3 demonstrated the greatest sensitivity to asymptomatic AD pathology. Tau, rather than amyloid-ß, was closely associated with imaging-derived synaptic and microstructural measures. Microstructural metrics were significantly associated with neuropsychological assessments. These findings suggest that the subiculum and CA1-3 are the most vulnerable in asymptomatic AD and tau level is driving these early changes.

20.
Neuroimage Clin ; 24: 102065, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31795061

RESUMEN

Motor stroke has been characterized by disruptions in multiple large-scale functional brain networks. However, it remains unclear whether stroke patients with good hand outcomes show different connectivity profiles within and between networks from those with poor hand outcomes. In this cross-sectional study, we recruited 52 chronic subcortical stroke patients [illness duration (mean ± SD): 16 ± 16.2 months] and 52 healthy controls from the local hospital and community from June 2010 to August 2016. We first performed independent component analysis (ICA) on resting-state fMRI data to extract fifteen resting-state networks. Then, we compared the functional connectivity within and between networks across 52 healthy controls, 26 patients with a partially paralyzed hand (PPH), and 26 patients with a completely paralyzed hand (CPH). Compared to the patients with a PPH, the patients with a CPH showed increased connectivity in the contralesional sensorimotor cortex within the contralesional sensorimotor network; the increased connectivity was negatively correlated with the performance of the paretic hand. Moreover, the patients with a CPH, compared to those with a PPH, showed decreased strengths of connectivity between the ipsilesional sensorimotor network and both the dorsal sensorimotor network and ventral visual network; the decreased strengths of connectivity were positively correlated with the performance of the paretic hand. Collectively, our findings suggest that stroke patients with different hand outcomes show distinct functional reorganization patterns in large-scale brain networks. These findings shed light on the network-level neuromechanisms that help explain why stroke survivors in the chronic stage show different hand outcomes.


Asunto(s)
Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Parálisis/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Anciano , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA