Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(2): 827-851, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36423342

RESUMEN

Chloroplasts produce singlet oxygen (1O2), which causes changes in nuclear gene expression through plastid-to-nucleus retrograde signaling to increase plant fitness. However, the identity of this 1O2-triggered pathway remains unclear. Here, we identify mutations in GENOMES UNCOUPLED4 (GUN4) and GUN5 as suppressors of phytochrome-interacting factor1 (pif1) pif3 in regulating the photo-oxidative response in Arabidopsis thaliana. GUN4 and GUN5 specifically interact with EXECUTER1 (EX1) and EX2 in plastids, and this interaction is alleviated by treatment with Rose Bengal (RB) or white light. Impaired expression of GUN4, GUN5, EX1, or EX2 leads to insensitivity to excess light and overexpression of EX1 triggers photo-oxidative responses. Strikingly, upon light irradiation or RB treatment, EX1 transiently accumulates in the nucleus and the nuclear fraction of EX1 shows a similar molecular weight as the plastid-located protein. Point mutagenesis analysis indicated that nuclear localization of EX1 is required for its function. EX1 acts as a transcriptional co-activator and interacts with the transcription factors WRKY18 and WRKY40 to promote the expression of 1O2-responsive genes. This study suggests that EX1 may act in plastid-to-nucleus signaling and establishes a 1O2-triggered retrograde signaling pathway that allows plants adapt to changing light environments during chloroplast development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Oxígeno Singlete/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plastidios/metabolismo , Transducción de Señal/genética , Cloroplastos/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Plant Physiol ; 195(3): 2274-2288, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38487893

RESUMEN

Light and temperature are 2 major environmental factors that affect the growth and development of plants during their life cycle. Plants have evolved complex mechanisms to adapt to varying external environments. Here, we show that JASMONATE ZIM-domain protein 3 (JAZ3), a jasmonic acid signaling component, acts as a factor to integrate light and temperature in regulating seedling morphogenesis. JAZ3 overexpression transgenic lines display short hypocotyls under red, far-red, and blue light and warm temperature (28 °C) conditions compared to the wild type in Arabidopsis (Arabidopsis thaliana). We show that JAZ3 interacts with the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4). Interestingly, JAZ3 spontaneously undergoes liquid-liquid phase separation (LLPS) in vitro and in vivo and promotes LLPS formation of PIF4. Moreover, transcriptomic analyses indicate that JAZ3 regulates the expression of genes involved in many biological processes, such as response to auxin, auxin-activated signaling pathway, regulation of growth, and response to red light. Finally, JAZ3 inhibits the transcriptional activation activity and binding ability of PIF4. Collectively, our study reveals a function and molecular mechanism of JAZ3 in regulating plant growth in response to environmental factors such as light and temperature.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Temperatura , Plantas Modificadas Genéticamente , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Transducción de Señal , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Morfogénesis/efectos de la radiación , Morfogénesis/genética , Vernalización
3.
Plant Cell ; 34(11): 4191-4212, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35920787

RESUMEN

Light is a key environmental signal that regulates plant growth and development. While posttranscriptional regulatory mechanisms of gene expression include alternative splicing (AS) of pre-messenger RNA (mRNA) in both plants and animals, how light signaling affects AS in plants is largely unknown. Here, we identify DExD/H RNA helicase U2AF65-associated protein (UAP56) as a negative regulator of photomorphogenesis in Arabidopsis thaliana. UAP56 is encoded by the homologs UAP56a and UAP56b. Knockdown of UAP56 led to enhanced photomorphogenic responses and diverse developmental defects during vegetative and reproductive growth. UAP56 physically interacts with the central light signaling repressor constitutive photomorphogenic 1 (COP1) and U2AF65. Global transcriptome analysis revealed that UAP56 and COP1 co-regulate the transcription of a subset of genes. Furthermore, deep RNA-sequencing analysis showed that UAP56 and COP1 control pre-mRNA AS in both overlapping and distinct manners. Ribonucleic acid immunoprecipitation assays showed that UAP56 and COP1 bind to common small nuclear RNAs and mRNAs of downstream targets. Our study reveals that both UAP56 and COP1 function as splicing factors that coordinately regulate AS during light-regulated plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Empalme Alternativo/genética , ARN Helicasas/genética , Luz , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
4.
Plant Cell ; 34(1): 633-654, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34741605

RESUMEN

Phytochrome A (phyA) is the far-red (FR) light photoreceptor in plants that is essential for seedling de-etiolation under FR-rich environments, such as canopy shade. TANDEM ZINC-FINGER/PLUS3 (TZP) was recently identified as a key component of phyA signal transduction in Arabidopsis thaliana; however, how TZP is integrated into the phyA signaling networks remains largely obscure. Here, we demonstrate that ELONGATED HYPOCOTYL5 (HY5), a well-characterized transcription factor promoting photomorphogenesis, mediates FR light induction of TZP expression by directly binding to a G-box motif in the TZP promoter. Furthermore, TZP physically interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), an E3 ubiquitin ligase targeting HY5 for 26S proteasome-mediated degradation, and this interaction inhibits COP1 interaction with HY5. Consistent with those results, TZP post-translationally promotes HY5 protein stability in FR light, and in turn, TZP protein itself is destabilized by COP1 in both dark and FR light conditions. Moreover, tzp hy5 double mutants display an additive phenotype relative to their respective single mutants under high FR light intensities, indicating that TZP and HY5 also function in largely independent pathways. Together, our data demonstrate that HY5 and TZP mutually upregulate each other in transmitting the FR light signal, thus providing insights into the complicated but delicate control of phyA signaling networks.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fitocromo A/genética , Transducción de Señal , Factores de Transcripción/genética , Regulación hacia Arriba , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitocromo A/metabolismo , Factores de Transcripción/metabolismo
5.
Nat Chem Biol ; 18(12): 1361-1369, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36376475

RESUMEN

Osmotic stress imposed by drought and high salinity inhibits plant growth and crop yield. However, our current knowledge on the mechanism by which plants sense osmotic stress is still limited. Here, we identify the transcriptional regulator SEUSS (SEU) as a key player in hyperosmotic stress response in Arabidopsis. SEU rapidly coalesces into liquid-like nuclear condensates when extracellular osmolarity increases. The intrinsically disordered region 1 (IDR1) of SEU is responsible for its condensation. IDR1 undergoes conformational changes to adopt more compact states after an increase in molecular crowding both in vitro and in cells, and two predicted α-helical peptides are required. SEU condensation is indispensable for osmotic stress tolerance, and loss of SEU dramatically compromises the expression of stress tolerance genes. Our work uncovers a critical role of biomolecular condensates in cellular stress perception and response and expands our understanding of the osmotic stress pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo
6.
J Integr Plant Biol ; 66(6): 1126-1147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38629459

RESUMEN

Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Senescencia de la Planta , Ácido Salicílico , Factores de Transcripción , Ácido Salicílico/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Senescencia de la Planta/genética , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ADN
7.
Br J Cancer ; 128(2): 310-320, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396819

RESUMEN

BACKGROUND: In this real-world study, we aimed to elucidate the predictive value of tumour-associated stroma for clinical prognostic and therapeutic response in upper tract urothelial carcinoma (UTUC) by reviewing the clinicopathologic characteristics of 1015 UTUC patients through a nationwide multicenter analysis. METHODS: The tumour-stroma ratio (TSR) was assessed based on tissue sections stained for hematoxylin and eosin (H&E), and patients were further stratified into stroma-high (>50% stroma) and stroma-low group (≤50% stroma). Kaplan-Meier curve and Cox regression hazard analysis were conducted to assess the survival outcomes of UTUC patients. Bioinformatics analysis and immunostaining analysis were applied to portray the tumour microenvironment (TME). RESULTS: Stroma-high UTUC was significantly associated with poorer survival outcomes and inferior chemotherapeutic responsiveness. Our established nomogram achieved a high prognostic accuracy in predicting overall survival and cancer-specific survival in both of the discovery cohort (area under the curve [AUC] 0.663 and 0.712) and the validation cohort (AUC 0.741 and 0.747). Moreover, stroma-high UTUC was correlated with immunoevasive TME accompanied by increased cancer-associated fibroblasts, tumour-associated macrophages and, conspicuously a cluster of highly exhausted CD8+ T cells. CONCLUSION: Our results showed stroma-high UTUC was associated with an inferior prognosis and an immunoevasive TME with exhausted CD8+ T cells in UTUC patients. Our TSR-based nomogram could be used to refine prognosis and inform treatment decisions of patients with UTUC.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/tratamiento farmacológico , Linfocitos T CD8-positivos/patología , Estudios Retrospectivos , Pronóstico , Microambiente Tumoral
8.
New Phytol ; 240(3): 1097-1115, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37606175

RESUMEN

Light signals are perceived by photoreceptors, triggering the contrasting developmental transition in dark-germinated seedlings. Phytochrome-interacting factors (PIFs) are key regulators of this transition. Despite their prominent functions in transcriptional activation, little is known about PIFs' roles in transcriptional repression. Here, we provide evidence that histone acetylation is involved in regulating phytochrome-PIFs signaling in Arabidopsis. The histone deacetylase HDA19 interacts and forms a complex with PIF1 and PIF3 and the Mediator subunit MED25. The med25/hda19 double mutant mimics and enhances the phenotype of pif1/pif3 in both light and darkness. HDA19 and MED25 are recruited by PIF1/PIF3 to the target loci to reduce histone acetylation and chromatin accessibility, providing a mechanism for PIF1/PIF3-mediated transcriptional repression. Furthermore, MED25 forms liquid-like condensates, which can compartmentalize PIF1/PIF3 and HDA19 in vitro and in vivo, and the number of MED25 puncta increases in darkness. Collectively, our study establishes a mechanism wherein PIF1/PIF3 interact with HDA19 and MED25 to mediate transcriptional repression in the phytochrome signaling pathway and suggests that condensate formation with Mediator may explain the distinct and specific transcriptional activity of PIF proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Transducción de Señal
9.
Immunology ; 167(2): 247-262, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751881

RESUMEN

Bladder cancer is a common malignancy in the urinary system. Defects of drug molecules in bladder during treatment, such as passive diffusion, rapid clearance of periodic urination, poor adhesion and permeation abilities, lead to low delivery efficiency of conventional drugs and high recurrence rate of disease. In this study, we designed multi-responsive mesoporous polydopamine (PDA) composite nanorods cooperating with nano-enzyme and photosensitiser for intensive immunotherapy of bladder cancer. The strongly adhesive mesoporous PDA with wheat germ agglutinin on nanoparticles could specifically adhere to epithelial glycocalyx and made the nanoparticles aggregate in urinary pathways. Meanwhile, 2,3-dimethylmaleic anhydride could be hydrolysed in acidic conditions of tumour microenvironment, giving it a positive charge (charge reversal), which is more amenable to enter cancer cells. Afterwards, manganese dioxide nanorods could catalyse the reaction of excess H2 O2 in tumour microenvironment to generate active oxygen, so as to change the hypoxic environment in tumour, and achieve a pH-responsive for slow release of PD-L1. After the ICG was irradiated by infrared light, a large amount of singlet oxygen was generated, thereby enhancing the therapeutic effect and reducing toxicity in vivo. Besides, mesoporous PDA with indocyanine green photothermal agent could have a local heat up quickly under the near-infrared light to kill cancer cells, thereby enhancing therapeutic efficacy. Accordingly, this mesoporous PDA composite nanorods shed a light on bladder tumour treatment.


Asunto(s)
Nanopartículas , Nanotubos , Neoplasias de la Vejiga Urinaria , Antígeno B7-H1 , Línea Celular Tumoral , Doxorrubicina , Humanos , Inmunoterapia , Verde de Indocianina/metabolismo , Indoles , Nanopartículas/uso terapéutico , Fármacos Fotosensibilizantes , Polímeros , Especies Reactivas de Oxígeno , Oxígeno Singlete , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/terapia , Aglutininas del Germen de Trigo
10.
New Phytol ; 235(5): 1868-1883, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35615903

RESUMEN

Tetrapyrroles have essential functions as pigments and cofactors during plant growth and development, and the tetrapyrrole biosynthesis pathway is tightly controlled. Multiple organellar RNA editing factors (MORFs) are required for editing of a wide variety of RNA sites in chloroplasts and mitochondria, but their biochemical properties remain elusive. Here, we uncovered the roles of chloroplast-localized MORF2 and MORF9 in modulating tetrapyrrole biosynthesis and embryogenesis in Arabidopsis thaliana. The lack or reduced transcripts of MORF2 or MORF9 significantly affected biosynthesis of the tetrapyrrole precursor 5-aminolevulinic acid and accumulation of Chl and other tetrapyrrole intermediates. MORF2 directly interacts with multiple tetrapyrrole biosynthesis enzymes and regulators, including NADPH:PROTOCHLOROPHYLLIDE OXIDOREDUCTASE B (PORB) and GENOMES UNCOUPLED4 (GUN4). Strikingly, MORF2 and MORF9 display holdase chaperone activity, alleviate the aggregation of PORB in vitro, and are essential for POR accumulation in vivo. Moreover, both MORF2 and MORF9 significantly stimulate magnesium chelatase activity. Our findings reveal a previously unknown biochemical property of MORF proteins as chaperones and point to a new layer of post-translational control of the tightly regulated tetrapyrrole biosynthesis in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Tetrapirroles/metabolismo
11.
Plant Physiol ; 187(1): 289-302, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-33764465

RESUMEN

Seed dormancy and germination are fundamental processes for plant propagation, both of which are tightly regulated by internal and external cues. Phytochrome B (phyB) is a major red/far-red-absorbing photoreceptor that senses light signals that modulate seed dormancy and germination. However, the components that directly transduce that signal downstream of phyB are mostly unknown. Here, we show that the transposase-derived transcription factor FAR-RED ELONGATED HYPOCOTYL3 (FHY3) inhibits seed dormancy and promotes phyB-mediated seed germination in Arabidopsis thaliana. FHY3 physically interacts with phyB in vitro and in vivo. RNA-sequencing and reverse transcription-quantitative polymerase chain reaction analyses showed that FHY3 regulates multiple downstream genes, including REVEILLE2 (RVE2), RVE7, and SPATULA (SPT). Yeast one-hybrid, electrophoresis mobility shift, and chromatin immunoprecipitation assays demonstrated that FHY3 directly binds these genes via a conserved FBS cis-element in their promoters. Furthermore, RVE2, RVE7, and GIBBERELLIN 3-OXIDASE 2 (GA3ox2) genetically act downstream of FHY3. Strikingly, light and phyB promote FHY3 protein accumulation. Our study reveals a transcriptional cascade consisting of phyB-FHY3-RVE2/RVE7/SPT-GA3ox2 that relays environmental light signals and thereby controls seed dormancy and germination.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Germinación/genética , Fitocromo B/genética , Fitocromo/genética , Latencia en las Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Fitocromo B/metabolismo
13.
New Phytol ; 229(6): 3221-3236, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33245784

RESUMEN

Reprogramming of the transcriptome during photomorphogenesis requires dynamic changes in chromatin and distribution of histone modifications. However, the chromatin-based regulation of this process remains to be elucidated. Here, we identify the conserved SWI-INDEPENDENT3 LIKE (SNL)-HISTONE DEACETYLASE19 (HDA19) deacetylase complex, including HDA19 and SNL1-SNL6, as a negative regulator of the light signaling pathway. Light-repression of HDA19 and SNLs expression is mediated by photoreceptors. HDA19 and SNLs are required for histone deacetylation and chromatin inactivation of PHYA gene. We further examined the interaction between SNL-HDA19 complex and ELONGATED HYPOCOTYL5 (HY5), and their antagonistic regulation on the expressions of target genes. The HDA19 deacetylase complex is recruited by HY5 to the chromatin regions of two positive light signaling genes, HY5 and B-BOX CONTAINING PROTEIN 22 (BBX22), thereby reduces the accessibility and histone acetylation and represses their expression. HDA19, SNL1, and HY5 associate with the same regulatory regions of HY5 and BBX22, and HY5 binding to these loci is enhanced upon SNL-HDA19 dysfunction. Our study reveals a crucial role for the HDA19 deacetylase complex in light signaling and demonstrates that the functional interplay between chromatin regulators and transcription factors regulates photomorphogenetic responses to the changing light environments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Luz , Factores de Transcripción/metabolismo
14.
Plant Physiol ; 184(1): 506-517, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32581115

RESUMEN

Early seedling development and emergence from the soil, which are critical for plant growth and important for crop production, are controlled by internal factors, such as phytohormones, and external factors, such as light and salt. However, little is known about how light and salt signals are integrated with endogenous cues in controlling plant physiological processes. Here, we show that overexpression of rice (Oryza sativa) PHYTOCHROME-INTERACTING FACTOR-LIKE14 (OsPIL14) or loss of function of the DELLA protein SLENDER RICE1 (SLR1) promotes mesocotyl and root growth, specifically in the dark and under salt stress. Furthermore, salt induces OsPIL14 turnover but enhances SLR1 accumulation. OsPIL14 directly binds to the promoter of cell elongation-related genes and regulates their expression. SLR1 physically interacts with OsPIL14 and negatively regulates its function. Our study reveals a mechanism by which the OsPIL14-SLR1 transcriptional module integrates light and gibberellin signals to fine-tune seedling growth under salt stress, enhancing understanding about how crops adapt to saline environments.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
Plant Physiol ; 184(1): 529-545, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32576643

RESUMEN

Seed germination is a vital developmental process that is tightly controlled by environmental signals, ensuring germination under favorable conditions. High temperature (HT) suppresses seed germination. This process, known as thermoinhibition, is achieved by activating abscisic acid and inhibiting gibberellic acid biosynthesis. The zinc-finger protein SOMNUS (SOM) participates in thermoinhibition of seed germination by altering gibberellic acid/abscisic acid metabolism, but the underlying regulatory mechanism is poorly understood. In this study, we report that SOM binds to its own promoter and activates its own expression in Arabidopsis (Arabidopsis thaliana) and identify the MADS-box transcription factor AGAMOUS-LIKE67 (AGL67) as a critical player in SOM function, based on its ability to recognize CArG-boxes within the SOM promoter and mediate the trans-activation of SOM under HTs. In addition, AGL67 recruits the histone mark reader EARLY BOLTING IN SHORT DAY (EBS), which recognizes H3K4me3 at SOM chromatin. In response to HTs, AGL67 and EBS are highly enriched around the SOM promoter. The AGL67-EBS complex is also necessary for histone H4K5 acetylation, which activates SOM expression, ultimately inhibiting seed germination. Taken together, our results reveal an essential mechanism in which AGL67 cooperates with the histone mark reader EBS, which bridges the process of H3K4me3 recognition with H4K5 acetylation, thereby epigenetically activating SOM expression to suppress seed germination under HT stress.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Germinación/fisiología , Semillas/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Giberelinas/metabolismo , Calor , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética
16.
Photosynth Res ; 147(2): 131-143, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33164144

RESUMEN

Chloroplast gene expression is controlled by both plastid-encoded RNA polymerase (PEP) and nuclear-encoded RNA polymerase and is crucial for chloroplast development and photosynthesis. Environmental factors such as light and temperature can influence transcription in chloroplasts. In this study, we showed that mutation in DUA1, which encodes a pentatricopeptide repeat (PPR) protein in rice (Oryza sativa), led to deficiency in chloroplast development and chlorophyll biosynthesis, impaired photosystems, and reduced expression of PEP-dependent transcripts at low temperature especially under low-light conditions. Furthermore, we demonstrated that sigma factor OsSIG1 interacted with DUA1 in vitro and in vivo. Moreover, the levels of chlorophyll and PEP-dependent gene expression were significantly decreased in the Ossig1 mutants at low-temperature and low-light conditions. Our study reveals that the PPR protein DUA1 plays an important role in regulating PEP-mediated chloroplast gene expression through interacting with OsSIG1, thus modulates chloroplast development in response to environmental signals.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Fotosíntesis , Proteínas de Plantas/metabolismo , Factor sigma/metabolismo , Clorofila/genética , Clorofila/efectos de la radiación , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/efectos de la radiación , Frío , Luz , Mutación , Oryza/fisiología , Oryza/efectos de la radiación , Proteínas de Plantas/genética , Factor sigma/genética
17.
New Phytol ; 227(3): 683-697, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32289880

RESUMEN

The developmental program by which plants respond is tightly controlled by a complex cascade in which photoreceptors perceive and transduce the light signals that drive signaling processes and direct the transcriptional reprogramming, yielding specific cellular responses. The molecular mechanisms involved in the transcriptional regulation include light-regulated nuclear localization (the phytochromes and UVR8) and nuclear accumulation (the cryptochrome, cry2) of photoreceptors. This regulatory cascade also includes master regulatory transcription factors (TFs) that bridge photoreceptor activation with chromatin remodeling and regulate the expression of numerous light-responsive genes. Light signaling-related TFs often function as signal convergence points in concert with TFs in other signaling pathways to integrate complex endogenous and environmental cues that help the plant adapt to the surrounding environment. Increasing evidence suggests that chromatin modifications play a critical role in regulating light-responsive gene expression and provide an additional layer of light signaling regulation. Here, we provide an overview of our current knowledge of the transcriptional regulatory network involved in the light response, particularly the roles of TFs and chromatin in regulating light-responsive gene expression.


Asunto(s)
Fototransducción , Fitocromo , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Fitocromo/metabolismo , Plantas/metabolismo
18.
New Phytol ; 225(4): 1593-1605, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31580487

RESUMEN

Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown. Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana. RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2-SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB. Our study reveals a novel regulatory mechanism in which the RVE1-RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , Latencia en las Plantas , Unión Proteica , ARN de Planta , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Transcripción Genética
19.
Plant Physiol ; 181(1): 236-248, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289216

RESUMEN

Many plants monitor changes in day length (or photoperiod) and adjust the timing of the floral transition accordingly to ensure reproductive success. In long-day plants, a long-day photoperiod triggers the production of florigen, which promotes the floral transition. FLOWERING LOCUS T (FT) in Arabidopsis (Arabidopsis thaliana) encodes a major component of florigen, and FT expression is activated in leaf veins specifically at dusk through the photoperiod pathway. Repression of FT mediated by Polycomb group (PcG) proteins prevents precocious flowering and adds another layer to FT regulation. Here, we identified high-level trimethylation of histone H3 at Lys 27 (H3K27me3) in the high trimethylation region (HTR) of the FT locus from the second intron to the 3' untranslated region. The HTR contains a cis-regulatory DNA element required for H3K27me3 enrichment that is recognized by the transcriptional repressor VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE1 (VAL1). VAL1 directly represses FT expression before dusk and at night, coinciding with the high abundance of both VAL1 mRNA and VAL1 homodimer. Furthermore, VAL1 recruits LIKE HETEROCHROMATIN PROTEIN1 and MULTICOPY SUPRESSOR OF IRA1 to FT chromatin, leading to an H3K27me3 peak at the HTR of FT These findings reveal a mechanism for PcG repression of FT mediated by an intronic cis-silencing element and suggest a possible role for VAL1 in modulating PcG repression of FT during the flowering response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fotoperiodo , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cromatina/genética , Florigena/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Histonas/metabolismo , Hojas de la Planta/genética , Proteínas del Grupo Polycomb/genética , Proteínas Represoras/genética
20.
Plant Physiol ; 181(2): 656-668, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31377725

RESUMEN

Changing daylength (or photoperiod) is a seasonal cue used by many plants to adjust the timing of their floral transition to ensure reproductive success. An inductive long-day photoperiod triggers the expression of FLOWERING LOCUS T (FT), which promotes flowering. FT, encoding a major component of florigen, is induced in leaf veins specifically at dusk through the photoperiod pathway; however, the modulation of FT expression in response to photoperiod cues remains poorly understood. Here, we report that the balance between Polycomb group (PcG) and Trithorax group (TrxG) proteins sets appropriate FT expression in long days in Arabidopsis (Arabidopsis thaliana). In PcG mutant lines, FT was highly derepressed, but FT expression was decreased to an almost wild-type level and pattern upon the additional disruption of chromatin-remodeling factors PICKLE (PKL) and ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), but not by disruption of photoperiod pathway components. PKL interacts with ATX1 to mediate trimethylation of histone H3 on lysine-4 at the FT locus, leading to antagonistic effects of PKL and ATX1 on PcG proteins in the regulation of FT expression. Therefore, the TrxG-like protein PKL prevents PcG-mediated silencing to ensure specific and appropriate expression of FT, thereby determining the proper flowering response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , ADN Helicasas/metabolismo , Flores/fisiología , Proteínas del Grupo Polycomb/metabolismo , N-Metiltransferasa de Histona-Lisina , Fotoperiodo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA