Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2307977120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487062

RESUMEN

Contact electrification (CE) in water has attracted much attention, owing to its potential impacts on the chemical reactions, such as the recent discovery of spontaneous generation of hydrogen peroxide (H2O2) in water microdroplets. However, current studies focus on the CE of bulk water, the measurement of CE between micrometer-size water droplets is a challenge and its mechanism still remains ambiguous. Here, a method for quantifying the amount of charge carried by the water microdroplets produced by ultrasonic atomization is proposed. In the method, the motions of water microdroplets in a uniform electric field are observed and the electrostatic forces on the microdroplets are calculated based on the moving speed of the microdroplets. It is revealed that the charge transfer between water microdroplets is size-dependent. The large microdroplets tend to be positively charged while the small microdroplets tend to receive negative charges, implying that the negative charges transfer from large microdroplets to the small microdroplets during ultrasonic atomization. Further, a theoretical model for microdroplets charging is proposed, in which the curvature-induced surface potential/energy difference is suggested to be responsible for the charge transfer between microdroplets. The findings show that the electric field strength between two microdroplets with opposite charges during separation is strong enough to convert OH‒ to OH*, providing evidence for the CE-induced spontaneous generation of H2O2 in water microdroplets.

2.
J Am Chem Soc ; 146(9): 6125-6133, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38323980

RESUMEN

Chemical analysis of ions and small organic molecules in liquid samples is crucial for applications in chemistry, biology, environmental sciences, and health monitoring. Mainstream electrochemical and chromatographic techniques often suffer from complex and lengthy sample preparation and testing procedures and require either bulky or expensive instrumentation. Here, we combine triboelectrification and charge transfer on the surface of electrical insulators to demonstrate the concept of triboelectric spectroscopy (TES) for chemical analysis. As a drop of the liquid sample slides along an insulating reclined plane, the local triboelectrification of the surface is recorded, and the charge pattern along the sample trajectory is used to build a fingerprinting of the charge transfer spectroscopy. Chemical information extracted from the charge transfer pattern enables a new nondestructive and ultrafast (<1 s) tool for chemical analysis. TES profiles are unique, and through an automated identification, it is possible to match against standard and hence detect over 30 types of common salts, acids, bases and organic molecules. The qualitative and quantitative accuracies of the TES methodology is close to 93%, and the detection limit is as low as ppb levels. Instruments for TES chemical analysis are portable and can be further miniaturized, opening a path to in situ and rapid chemical detection relying on inexpensive, portable low-tech instrumentation.

3.
J Am Chem Soc ; 146(13): 9302-9310, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506150

RESUMEN

Tailoring materials with prescribed properties and regular structures is a critical and challenging research topic. Early transition metals were found to form supermagic M8C12 metallocarbohedrenes (Met-Cars); however, stable metal carbides are not limited to this common stoichiometry. Utilizing self-developed deep-ultraviolet laser ionization mass spectrometry, here, we report a strategy to generate new titanium carbides by reacting pure Tin clusters with acetylene. Interestingly, two products corresponding to Ti17C2 and Ti19C10 exhibit superior abundances in addition to the Ti8C12 Met-Cars. Using global-minimum search, the structures of Ti17C2 and Ti19C10 are determined to be an ellipsoidal D4d and a rod-shaped D5h geometry, respectively, both with carbon-capped Ti4C moieties and superatomic features. We illustrate the electronic structures and bonding nature in these carbon-doped superatoms concerning their enhanced stability and local aromaticity, shedding light on a new class of metal-carbide nanomaterials with atomic precision.

4.
Chem Rev ; 122(5): 5209-5232, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160191

RESUMEN

Interfaces between a liquid and a solid (L-S) are the most important surface science in chemistry, catalysis, energy, and even biology. Formation of an electric double layer (EDL) at the L-S interface has been attributed due to the adsorption of a layer of ions at the solid surface, which causes the ions in the liquid to redistribute. Although the existence of a layer of charges on a solid surface is always assumed, the origin of the charges is not extensively explored. Recent studies of contact electrification (CE) between a liquid and a solid suggest that electron transfer plays a dominant role at the initial stage for forming the charge layer at the L-S interface. Here, we review the recent works about electron transfer in liquid-solid CE, including scenerios such as liquid-insulator, liquid-semiconductor, and liquid-metal. Formation of the EDL is revisited considering the existence of electron transfer at the L-S interface. Furthermore, the triboelectric nanogenerator (TENG) technique based on the liquid-solid CE is introduced, which can be used not only for harvesting mechanical energy from a liquid but also as a probe for probing the charge transfer at liquid-solid interfaces.


Asunto(s)
Adsorción
5.
J Phys Chem A ; 128(7): 1274-1279, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38334079

RESUMEN

Iodomethane and bromomethane (CH3I/CH3Br) are common chemicals, but their chemistry on nanometals is not fully understood. Here, we analyze the reactivity of Rhn+ (n = 3-30) clusters with halomethanes and unveil the spin effect and concentration dependence in the C-H and C-X bond activation. It is found that the reactions under halomethane-rich conditions differ from those under metal-rich conditions. Both CH3I and CH3Br undergo similar dehydrogenation on the Rhn+ clusters in the presence of small quantity reactants; however, different reactions are observed in the presence of sufficient CH3I/CH3Br, showing dominant Rh(CH3Br)x+ (x = 1-4) products but a series of RhnCxHyIz+ species (x = 1-4, y = 1-12, and z = 1-5) pertaining to H2, HI, or CH4 removal. Density functional theory calculations reveal that the dehydrogenation and demethanation of CH3Br are relatively less exothermic and will be deactivated by sufficient gas collisions if helium cooling takes away energy immediately; instead, the successive adsorption of CH3Br gives rise to a series of Rh(CH3Br)x+ species with accidental C-Br bond dissociation.

6.
J Am Chem Soc ; 145(49): 26908-26914, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38041728

RESUMEN

Ferromagnets constructed from nanometals of atomic precision are important for innovative advances in information storage, energy conversion, and spintronic microdevices. Considerable success has been achieved in designing molecular magnets, which, however, are challenging in preparation and may suffer from drawbacks on the incompatibility of high stability and strong ferromagnetism. Utilizing a state-of-the-art self-developed mass spectrometer and a homemade laser vaporization source, we have achieved a highly efficient preparation of pure iron clusters, and here, we report the finding of a strongly ferromagnetic metal-carbon cluster, Fe12C12-, simply by reacting the Fen- clusters with acetylene in proper conditions. The unique stability of this ferromagnetic Fe12C12- cluster is rooted in a plumb-bob structure pertaining to Jahn-Teller distortion. We classify Fe12C12- as a new member of metallo-carbohedrenes and elucidate its structural stability mechanism as well as its soft-landing deposition and magnetization measurements, providing promise for the exploration of potential applications.

7.
Nano Lett ; 22(10): 4074-4082, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35522039

RESUMEN

A stretchable triboelectric nanogenerator (TENG) can be a promising solution for the power supply of various flexible electronics. However, the detailed electrification mechanism of elastic triboelectric materials still needs to be clarified. In this work, we found crystallization behavior induced by strain and low temperature can lead to a shift in a triboelectric series for commonly used triboelectric elastomers and even reverse the triboelectric polarity. This effect is attributed to the notable rearrangement of surface electron cloud density happening along with the crystallization process of the molecular chain. This effect is significant with natural rubber, and silicone rubber can experience this effect at low temperature, which also leads to a shift in a triboelectric series, and an applied strain at low temperature can further enhance this shift. This study demonstrated that the electrification polarity of triboelectric materials should be re-evaluated under different strains and different temperatures, which provides a mechanism distinct from the general understanding of elastic triboelectric materials.

8.
Nano Lett ; 22(22): 9084-9091, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36342419

RESUMEN

Tribovoltaic direct-current (DC) nanogenerator made of dynamic semiconductor heterojunction is emerging as a promising mechanical energy harvesting technology. However, fundamental understanding of the mechano-electronic carrier excitation and transport at dynamic semiconductor interfaces remains to be investigated. Here, we demonstrated for the first time, that tribovoltaic DC effect can be tuned with metal-insulator transition (MIT). In a representative MIT material (vanadium dioxide, VO2), we found that the short-circuit current (ISC) can be enhanced by >20 times when the material is transformed from insulating to metallic state upon static or dynamic heating, while the open-circuit voltage (VOC) turns out to be unaffected. Such phenomenon may be understood by the Hubbard model for Mott insulator: orders' magnitude increase in conductivity is induced when the nearest hopping changes dramatically and overcomes the Coulomb repulsion, while the Coulomb repulsion giving rise to the quasi-particle excitation energy remains relatively stable.

9.
Nanotechnology ; 31(38): 385401, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32492669

RESUMEN

Wurtzite-structured CdS material is widely used in information sensing and energy harvesting. Based on the piezoelectric property of CdS, we present a flexible piezoelectric nanogenerator (PENG) with three-dimensional-structured CdS nanowall arrays. Under index finger oscillations at a slow rate, the maximal open-circuit voltage and short-circuit current are 1.2 V and 6 nA respectively. Meanwhile, the working mechanism of this PENG was successfully studied with piezoelectric potential distribution and energy band theory respectively. All of the results show that an increase in the bending degree and bending frequency will affect the output of the PENG, suggesting that it can be used as a flexible sensor. In addition, the fabricated PENG can be used as a self-powered pressure sensor relying on the linear relationship between the output voltage and the vertical pressure. This work may provide a new approach to fabricating piezoelectric nanogenerators based on three-dimensional materials as an energy harvester, which may also facilitate the development of flexible and wearable electric sensing technology.

10.
Nanotechnology ; 31(49): 495601, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32990261

RESUMEN

The high-performance filter capacitor is a hot research topic in the field of filter circuits for flexible and wearable devices, whereas traditional aluminum electrolytic capacitors still experience widespread problems in terms of large error factors and poor stability. To avoid these disadvantages, in this work, we have developed a liquid dual-layer supercapacitor (SC). When it is employed as the filter capacitor in a filter circuit, any waveform signal can be transformed into a linear signal. The maximum fluctuation of the output signal is less than 16 mV; the SC also demonstrates excellent filtering stability in a frequency range of 1 ∼ 100 000 Hz, as well as an amplitude window of 0 ∼ 10 V. In this framework, our filter SC demonstrates unparalleled processing properties, and can greatly improve the stability and extend the lifetime of the entire electronic circuit. The fact that the requirements of high-end electronic products can be fulfilled due to the contribution of this filter SC are particularly significant.

11.
Phys Chem Chem Phys ; 19(43): 29418-29423, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29076510

RESUMEN

The mechanism underlying bipolar charge distribution in the context of triboelectrification remains ambiguous. Furthermore, water can either promote or inhibit triboelectrification. It was determined through experimental and first-principles calculations that water can also reverse the polarity of transferred charges and cause a bipolar charge transfer. We examined triboelectrification between an Au/Cr-coated tip and stoichiometric Si3N2 film using Kelvin probe force microscopy. In addition, we investigated the generation of a bipolar charge distribution on the insulating Si3N2 surface by controlling the frictional conditions. With regard to the effect of a water meniscus in the interface between the surface and tip, we predicted the dissociation of water molecules on the Si3N2 surface and polarity reversing induced by water via first principles. Finally, we focused on the effect of water on the dangling bonds of Si atoms and surface states of Si3N2. The results indicated that the dangling bonds and surface states are essential to a bipolar charge transfer.

12.
Commun Chem ; 7(1): 68, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555377

RESUMEN

Bulk cobalt does not react with water at room temperature, but cobalt nanometals could yield corrosion at ambient conditions. Insights into the cobalt cluster reactions with water and oxygen enable us to better understand the interface reactivity of such nanometals. Here we report a comprehensive study on the gas-phase reactions of Con±/0 clusters with water and oxygen. All these Con±/0 clusters were found to react with oxygen, but only anionic cobalt clusters give rise to water dissociation whereas the cationic and neutral ones are limited to water adsorption. We elucidate the influences of charge states, bonding modes and dehydrogenation mechanism of water on typical cobalt clusters. It is unveiled that the additional electron of anionic Con- clusters is not beneficial to H2O adsorption, but allows for thermodynamics- and kinetics-favourable H atom transfer and dehydrogenation reactions. Apart from the charge effect, size effect and spin effect play a subtle role in the reaction process. The synergy of multiple metal sites in Con- clusters reduces the energy barrier of the rate-limiting step enabling hydrogen release. This finding of water dissociation on cobalt clusters put forward new connotations on the activity series of metals, providing new insights into the corrosion mechanism of cobalt nanometals.

13.
Adv Mater ; 36(25): e2400451, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38529563

RESUMEN

Wettability significantly influences various surface interactions and applications at the liquid-solid interface. However, the understanding is complicated by the intricate charge exchange occurring through contact electrification (CE) during this process. The understanding of the influence of triboelectric charge on wettability remains challenging, especially due to the complexities involved in concurrently measuring contact angles and interfacial electrical signals. Here, the relationship is investigated between surface charge density and change of contact angle of dielectric films after contact with water droplets. It is observed that the charge exchange when water spared lead to a spontaneous wetting phenomenon, which is termed as the contact electrification induced wetting (CEW). Notably, these results demonstrate a linear dependence between the change of contact angle (CA) of the materials and the density of surface charge on the solid surface. Continuous CEW tests show that not only the static CA but also the dynamics of wetting are influenced by the accumulation charges at the interface. The mechanism behind CEW involves the redistribution of surface charges on a solid surface and polar water molecules within liquid. This interaction results in a decrease in interface energy, leading to a reduction in the CA. Ab initio calculations suggest that the reduction in interface energy may stem from the enhanced surface charge on the substrate, which strengthens the hydrogen bond interaction between water and the substrate. These findings have the potential to advance the understanding of CE and wetting phenomena, with applications in energy harvesting, catalysis, and droplet manipulation at liquid-solid interfaces.

14.
J Hazard Mater ; 469: 133956, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460258

RESUMEN

Polyhalogenated carbazoles (PHCZs), an emerging persistent halogenated organic pollutant, have been detected in the environment. However, our understanding of PHCZs in the ocean remains limited. In this study, 47 seawater samples (covering 50 - 4000 m) and sediment samples (49 surface and 3 cores) were collected to investigate the occurrence and spatial distribution patterns of carbazole and its halogenated derivants (CZDs) in the Western Pacific Ocean. In seawater, the detection frequencies of CZ (97.87%) and 3-CCZ (57.45%) were relatively high. In addition, the average concentration of ΣPHCZs in the upper water (< 150 m, 0.23 ± 0.21 ng/L) was significantly lower than that in the deep ocean (1000 - 4000 m, 0.65 ± 0.56 ng/L, P < 0.05), which may indicate the vertical transport of PHCZs in the marine environment. The concentration of ΣCZDs in surface sediment ranges from 0.46 to 6.48 ng/g (mean 1.54 ng/g), among which CZ and 36-CCZ were the predominant components. Results from sediment cores demonstrate a noteworthy negative correlation between the concentration of CZDs and depth, indicating the ongoing natural degradation process occurring in sediment cores over a long period. This study offers distinctive insights into the occurrence, composition, and vertical features of CZDs in oceanic environments.

15.
ACS Nano ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36602519

RESUMEN

Contact between water droplets with hydrophobic surfaces is a common phenomenon at functional interfaces, and it has been extensively studied. However, quantifying the charge transfer between the liquid-solid interfacial contacting, especially for the charge density distribution throughout the movement of liquid droplet on a dielectric surface, remains to be investigated. Here, we developed a pixeled droplet triboelectric nanogenerator (pixeled droplet-TENG) array with high-density electrode array as a probe for measuring the charge transfer at a liquid-solid interface when a water drop moves on the hydrophobic surface. To intuitively observe the charge transfer between the liquid-solid interface, we "imaged" the transferred charges along movement trajectory of a water droplet as it slides along a tilted solid surface at a spatial resolution of 0.4 mm and time sensitivity of 0.02 s. Our study shows that the transferred charges are not uniformly distributed along the path, which is possibly due to the two-step model of electron transfer and ion adsorbed on the solid surface, and thus the formation of an electric double layer will inevitably shield the net surface on the solid surface. Our study presents a probe technology with potential applications in surface chemistry, physics, material science, and cell biology.

16.
Sci Adv ; 9(33): eadi0214, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37585530

RESUMEN

Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh­[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.

17.
Small Methods ; 7(6): e2201593, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36895071

RESUMEN

Regulating the ranking of polymer in triboelectric series over a wide range is of great help for material's selection of triboelectric nanogenerators (TENGs). Herein, fluorinated poly(phthalazinone ether)s (FPPEs) with tunable molecular structure and aggregate structure are synthesized by co-polycondensation, while the large positive ranking shift in the triboelectric series can be achieved by introducing phthalazinone moieties with strong electron donating capability. FPPE-5, which includes abundant phthalazinone moieties, is more positive than all of the previously reported triboelectric polymers. Hence, the regulating range of FPPEs in this work updates a new record in triboelectric series, which is wider than that of previous works. A peculiar crystallization behavior, capable of trapping and storing more electrons, has been observed in FPPE-2 with 25% phthalazinone moieties. Correspondingly, FPPE-2 is more negative than FPPE-1 without a phthalazinone moiety, which is an unexpected shift against the common changing tendency in triboelectric series. With FPPEs films as the probing material, a tactile TENG sensor is applied to enable material identification via electrical signal polarity. Hence, this study demonstrates a strategy to regulate the series of triboelectric polymers by copolymerization using monomers with distinct electrification capabilities, where both the monomer ratio and the peculiar nonlinear behavior can control triboelectric performance.

18.
J Phys Chem B ; 126(14): 2754-2760, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35362971

RESUMEN

The role of the electrostatic environment in chemical reactions has long been an important research field, but most studies have focused on the influence of external electric fields on chemical processes, while the effect from the intrinsic electrostatic charges on the solution itself has been ignored. How an electrostatic field generated by contact electrification affects the solvent environment in a chemical reaction and then the chemical reactivity is still ambiguous. Here, based on the inspiration of the droplet triboelectric nanogenerator, electrostatic interactions between a statically charged luminol droplet and the surrounding directional electrostatic field were analyzed, and we demonstrate a relationship between the sign of the luminol sample (negatively or positively charged) and its effect on the reaction reactivity. Our results show that the increased reaction activity and the enhanced chemiluminescence (CL) only occurred when the luminol droplet yields positive charges, while a negatively charged luminol, on the contrary, tends to inhibit the CL, which brings direct evidence of the charge carriers of triboelectricity being electrons at the liquid-solid interface. This work provides a strategy for electrostatically regulating CL by simply statically charging a reaction solution with a dielectric solid and also carries a cautionary message on what to consider when preparing a sample for a chemical reaction.


Asunto(s)
Luminiscencia , Luminol , Transporte de Electrón , Electrones , Electricidad Estática
19.
Nat Commun ; 13(1): 5230, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064784

RESUMEN

Electron transfer has been proven the dominant charge carrier during contact electrification at the liquid-solid interface. However, the effect of electron spin in contact electrification remains to be investigated. This study examines the charge transfer between different liquids and ferrimagnetic solids in a magnetic field, focusing on the contribution of O2 molecules to the liquid-solid contact electrification. The findings reveal that magnetic fields promote electron transfer at the O2-containing liquid-solid interfaces. Moreover, magnetic field-induced electron transfer increases at higher O2 concentrations in the liquids and decreases at elevated temperatures. The results indicate spin-selected electron transfer at liquid-solid interface. External magnetic fields can modulate the spin conversion of the radical pairs at the O2-containing liquid and ferrimagnetic solid interfaces due to the Zeeman interaction, promoting electron transfer. A spin-selected electron transfer model for liquid-solid contact electrification is further proposed based on the radical pair mechanism, in which the HO2 molecules and the free unpaired electrons from the ferrimagnetic solids are considered radical pairs. The spin conversion of the [HO2• •e-] pairs is affected by magnetic fields, rendering the electron transfer magnetic field-sensitive.

20.
Adv Mater ; 33(42): e2102886, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34476851

RESUMEN

Contact electrification (CE) is a common physical phenomenon, and its mechanisms for solid-solid and liquid-solid cases have been widely discussed. However, the studies about liquid-liquid CE are hindered by the lack of proper techniques. Here, a contactless method is proposed for quantifying the charges on a liquid droplet based on the combination of electric field and acoustic field. The liquid droplet is suspended in an acoustic field, and an electric field force is created on the droplet to balance the acoustic trap force. The amount of charges on the droplet is thus calculated based on the equilibrium of forces. Further, the liquid-solid and liquid-liquid CE are both studied by using the method, and the latter is focused. The behavior of negatively precharged liquid droplet in the liquid-liquid CE is found to be different from that of the positively precharged one. The results show that the silicone oil droplet prefers to receive negative charges from a negatively charged aqueous droplet rather than positive charges from a positively charged aqueous droplet, which provides a strong evidence about the dominant role played by electron transfer in the liquid-liquid CE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA