RESUMEN
Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.
Asunto(s)
Cobre , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Muerte Celular , Homeostasis , Apoptosis , Microambiente TumoralRESUMEN
Acute lung injury (ALI) is characterized by inflammation of the lung tissue and oxidative injury caused by excessive accumulation of reactive oxygen species. Studies have suggested that anti-inflammatory or antioxidant agents could be used for the treatment of ALI with a good outcome. Therefore, our study aimed to test whether the mycelium extract of Sanghuangporus sanghuang (SS-1), believed to exhibit antioxidant and anti-inflammatory properties, could be used against the excessive inflammatory response associated with lipopolysaccharides (LPS)-induced ALI in mice and to investigate its possible mechanism of action. The experimental results showed that the administration of SS-1 could inhibit LPS-induced inflammation. SS-1 could reduce the number of inflammatory cells, inhibit myeloperoxidase (MPO) activity, regulate the TLR4/PI3K/Akt/mTOR pathway and the signal transduction of NF-κB and MAPK pathways in the lung tissue, and inhibit high mobility group box-1 protein 1 (HNGB1) activity in BALF. In addition, SS-1 could affect the synthesis of antioxidant enzymes Heme oxygenase 1 (HO-1) and Thioredoxin-1 (Trx-1) in the lung tissue and regulate signal transduction in the KRAB-associated protein-1 (KAP1)/nuclear factor erythroid-2-related factor Nrf2/Kelch Like ECH associated Protein 1 (Keap1) pathway. Histological results showed that administration of SS-1 prior to induction could inhibit the large-scale LPS-induced neutrophil infiltration of the lung tissue. Therefore, based on all experimental results, we propose that SS-1 exhibits a protective effect against LPS-induced ALI in mice. The mycelium of S. sanghuang can potentially be used for the treatment or prevention of inflammation-related diseases.
Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Antiinflamatorios/farmacología , Basidiomycota/química , Productos Biológicos/farmacología , Micelio/química , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Productos Biológicos/administración & dosificación , Productos Biológicos/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/efectos adversos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Tiorredoxinas/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
Glutathione reductase (GR) is one of important antioxidant enzymes in plants. This enzyme catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) with the accompanying oxidation of NADPH. Previously, we showed that salt-stress-responsive GR3 is a functional protein localized in chloroplasts and mitochondria in rice. To learn more about the role of GR3 in salt-stress tolerance, we investigated the response to 100 mM NaCl treatment in wild-type rice (WT); GR3 knockout mutant of rice (gr3); and the functional gr3-complementation line (C1). Rice GR3 was primarily expressed in roots at the seedling stage and ubiquitously expressed in all tissues except the sheath at heading stage. GR3 promoter-GUS was expressed in the vascular cylinder and cortex of root tissues in rice seedlings, vascular tissue of nodes, embryo and aleurone layer of seeds, and young flowers. Under both normal and salt-stress conditions, total GR activity was decreased by 20 % in gr3. Oxidative stress, indicated by malondialdehyde content, was greater in gr3 than the WT under salt stress. As compared with the WT, gr3 was sensitive to salt and methyl viologen; it showed inhibited growth, decreased maximal efficiency of photosystem II, decreased GSH and GSSG contents, and the ratio of GSH to GSSG. Conversely, the gr3-complementation line C1 rescued the tolerance to methyl viologen and salinity and recovered the growth and physiological damage caused by salinity. These results reveal that GR3 plays an important role in salt stress tolerance by regulating the GSH redox state in rice.
Asunto(s)
Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutatión Reductasa/genética , Oryza/enzimología , Estrés Fisiológico , Secuencia de Aminoácidos , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes Reporteros , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Malondialdehído/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Especificidad de Órganos , Oryza/efectos de los fármacos , Oryza/genética , Oryza/fisiología , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo , Salinidad , Tolerancia a la Sal , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Cloruro de Sodio/farmacologíaRESUMEN
BACKGROUND: Pyroptosis impacts the development of malignant tumors, yet its role in colorectal cancer (CRC) prognosis remains uncertain. AIM: To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration. METHODS: Gene expression data were obtained from The Cancer Genome Atlas (TCGA) and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus (GEO). Pyroptosis-related gene expression in cell clusters was analyzed, and enrichment analysis was conducted. A pyroptosis-related risk model was developed using the LASSO regression algorithm, with prediction accuracy assessed through K-M and receiver operating characteristic analyses. A nomogram predicting survival was created, and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations. Finally, the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database. RESULTS: An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B, SDHB, BST2, UBE2D2, GJA1, AIM2, PDCD6IP, and SEZ6L2 (P < 0.05). Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis (P < 0.05). Patients with higher risk scores demonstrated increased death risk and reduced overall survival (P < 0.05). Significant differences in immune infiltration were observed between low- and high-risk groups, correlating with pyroptosis-related gene expression. CONCLUSION: We developed a pyroptosis-related prognostic model for CRC, affirming its correlation with immune infiltration. This model may prove useful for CRC prognostic evaluation.
RESUMEN
Gelatin, widely employed in hydrogel dressings, faces limitations when used in high fluid environments, hindering effective material adhesion to wound sites and subsequently reducing treatment efficacy. The rapid degradation of conventional hydrogels often results in breakdown before complete wound healing. Thus, there is a pressing need for the development of durable adhesive wound dressings. In this study, 3-glycidoxypropyltrimethoxysilane (GPTMS) was utilized as a coupling agent to create gelatin-silica hybrid (G-H) dressings through the sol-gel method. The coupling reaction established covalent bonds between gelatin and silica networks, enhancing structural stability. Dopamine (DP) was introduced to this hybrid (G-H-D) dressing to further boost adhesiveness. The efficacy of the dressings for wound management was assessed through in-vitro and in-vivo tests, along with ex-vivo bioadhesion testing on pig skin. Tensile bioadhesion tests demonstrated that the G-H-D material exhibited approximately 2.5 times greater adhesion to soft tissue in wet conditions compared to pure gelatin. Moreover, in-vitro and in-vivo wound healing experiments revealed a significant increase in wound healing rates. Consequently, this material shows promise as a viable option for use as a moist wound dressing.
Asunto(s)
Dopamina , Gelatina , Animales , Porcinos , Gelatina/química , Dióxido de Silicio , Cicatrización de Heridas , Vendajes , Adherencias Tisulares , Hidrogeles/química , AntibacterianosRESUMEN
Glutathione reductases (GRs) are important components of the antioxidant machinery that plants use to respond against abiotic stresses. In rice, one cytosolic and two chloroplastic GR isoforms have been identified. In this work, we describe the cloning and characterization of the full-length cDNA encoding OsGR3, a chloroplast-localized GR that up to now was considered as a non-functional enzyme because of assumed lack of N-terminal conserved domains. The expression of OsGR3 in E. coli validated that it can be translated as a protein with GR activity. OsGR3 shows 76 and 53 % identity with OsGR1 (chloroplastic) and OsGR2 (cytosolic), respectively. Phylogenetic analysis revealed 2 chloroplastic GRs in Poaceae species, including rice, sorghum and brachypodium, but only one chloroplastic GR in dicots. A plastid transit peptide is located at the N terminus of OsGR3, and genetic transformation of rice with a GR3-GFP fusion construct further confirmed its localization in chloroplasts. Furthermore, OsGR1 and OsGR3 are also targeted to mitochondria, which suggest a combined antioxidant mechanism in both chloroplasts and mitochondria. However, both isoforms showed a distinct response to salinity: the expression of OsGR3 but not OsGR1 was induced by salt stress. In addition, the transcript level of OsGR3 was greatly increased with salicylic acid treatment but was not significantly affected by methyl jasmonate, dehydration or heat shock stress. Our results provide new clues about the possible roles of functional OsGR3 in salt stress and biotic stress tolerance.
Asunto(s)
Cloroplastos/enzimología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión Reductasa/genética , Mitocondrias/enzimología , Oryza/enzimología , Estrés Fisiológico/efectos de los fármacos , Secuencia de Aminoácidos , Secuencia Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glutatión Reductasa/efectos de los fármacos , Glutatión Reductasa/metabolismo , Isoenzimas , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Oryza/genética , Oryza/ultraestructura , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/ultraestructura , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Ácido Salicílico/farmacología , Salinidad , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/ultraestructura , Alineación de Secuencia , Cloruro de Sodio/farmacologíaRESUMEN
BACKGROUND: Despite the advancement of new screening strategies and the advances in pharmacological therapies, the cancerization rates of familial adenomatous polyposis (FAP) are stable and even increased in the last years. Therefore, it necessitates additional research to characterize and understand the underlying mechanisms of FAP. OBJECTIVE: To determine the genes that drive the pathogenesis of familial adenomatous polyposis (FAP). METHODS: We performed on a cohort (GSE111156) gene profile, which consist of four group of gene expressions (the gene expressions of cancer, adenoma and normal tissue of duodenal cancer from patients with FAP were defined as Case N, Case A and Case C respectively, while that of adenoma tissue from patients with FAP who did not have duodenal cancer was Ctrl A). Tracking Tumor Immunophenotype (TIP) website was applied to reveal immune infiltration profile and signature genes of FAP. We merged the genes of key module (pink and midnight module) with signature genes to obtained the biomarkers related with FAP pathogenesis. The expression of these five biomarkers in FAP intratumoral region (IT) and tumor rim (TR) was detected with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). RESULTS: In total, 220, 23 and 63 DEGs were determined in Cases C, A and N, in comparison to Ctrl A. In total, 196 and 10 DEGs were determined in Cases C and A, separately, as compared to Case N. A total of four biomarkers including CCL5, CD3G, CD2 and TLR3 were finally identified associated with pink module, while only one biomarker (KLF2) associated with midnight module was identified. All biomarkers were evidently raised in FAP IT tissues utilizing qRT-PCR. CONCLUSION: We identified five potential biomarkers for pathogenesis of FAP to understand the fundamental mechanisms of FAP progression and revealed some probable targets for the diagnosis or treatment of FAP.