RESUMEN
Skeletal muscle is the largest metabolic tissue responsible for systemic glucose handling. Glucose uptake into skeletal tissue is highly dynamic and delicately regulated, in part through the controlled expression and subcellular trafficking of multiple types of glucose transporters. Although the roles of GLUT4 in skeletal muscle metabolism are well established, the physiological significance of other, seemingly redundant, glucose transporters remain incompletely understood. Nonetheless, recent studies have shed light on the roles of several glucose transporters, such as GLUT1 and GLUT10, in skeletal muscle. Mice experiments suggest that GLUT10 could be a novel player in skeletal muscle metabolism in the context of mechanical overload, which is in line with the meta-analytical results of gene expression changes after resistance exercise in humans. Herein we discuss the knowns, unknowns, and implications of these recent findings.
Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa , Proteínas de Transporte de Monosacáridos , Animales , Humanos , Ratones , Transporte Biológico , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Músculo Esquelético/metabolismoRESUMEN
Dietary restriction (DR; sometimes called calorie restriction) has profound beneficial effects on physiological, psychological, and behavioral outcomes in animals and in humans. We have explored the molecular mechanism of DR-induced memory enhancement and demonstrate that dietary tryptophan-a precursor amino acid for serotonin biosynthesis in the brain-and serotonin receptor 5-hydroxytryptamine receptor 6 (HTR6) are crucial in mediating this process. We show that HTR6 inactivation diminishes DR-induced neurological alterations, including reduced dendritic complexity, increased spine density, and enhanced long-term potentiation (LTP) in hippocampal neurons. Moreover, we find that HTR6-mediated mechanistic target of rapamycin complex 1 (mTORC1) signaling is involved in DR-induced memory improvement. Our results suggest that the HTR6-mediated mTORC1 pathway may function as a nutrient sensor in hippocampal neurons to couple memory performance to dietary intake.
Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Memoria/fisiología , Receptores de Serotonina/metabolismo , Ácido 3-Hidroxibutírico/sangre , Animales , Western Blotting , Corticosterona/sangre , Electrofisiología , Prueba de Tolerancia a la Glucosa , Hipocampo/citología , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/metabolismo , Receptores de Serotonina/genética , Serotonina/sangre , Transducción de Señal/genética , Transducción de Señal/fisiologíaRESUMEN
Appropriate sexual selection or individual sexual attractiveness is closely associated with the reproductive success of a species. Here, we report that young male flies exhibit innate courtship preference for female flies that are raised on higher-yeast diets and that have greater body weight and fecundity, but reduced locomotor activity and shortened lifespan. Male flies discriminate among females that have been fed diets that contain 3 different yeast concentrations-1, 5, and 20% yeast- via gustatory, but not visual or olfactory, perception. Female flies that are raised on higher-yeast diets exhibit elevated expression levels of Drosophila insulin-like peptides (di lps), and we demonstrate that hypomorphic mutations of di lp2, 3, 5 or foxo, as well as oenocyte-specific gene disruption of the insulin receptor, all abolish this male courtship preference for high yeast-fed females. Moreover, our data demonstrate that disrupted di lp signaling can alter the expression profile of some cuticular hydrocarbons (CHCs) in female flies, and that genetic inhibition of an enzyme involved in the biosynthesis of CHCs in oenocytes, elongase F, also eliminates the male courtship preference. Together, our findings provide mechanistic insights that link female reproductive potential to sexual attractiveness, thereby encouraging adaptive mating and optimal reproductive success.-Lin, W.-S., Yeh, S.-R., Fan, S.-Z., Chen, L.-Y., Yen, J.-H., Fu, T.-F., Wu, M.-S., Wang, P.-Y. Insulin signaling in female Drosophila links diet and sexual attractiveness.
Asunto(s)
Dieta , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Preferencia en el Apareamiento Animal , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Transducción de SeñalRESUMEN
SCOPE: This study investigates the potential of glutamine to mitigate intestinal mucositis and dysbiosis caused by the chemotherapeutic agent 5-fluorouracil (5-FU). METHODS AND RESULTS: Over twelve days, Institute of Cancer Research (ICR) mice are given low (0.5 mg kg-1) or high (2 mg kg-1) doses of L-Glutamine daily, with 5-FU (50 mg kg-1) administered between days six and nine. Mice receiving only 5-FU exhibited weight loss, diarrhea, abnormal cell growth, and colonic inflammation, correlated with decreased mucin proteins, increased endotoxins, reduced fecal short-chain fatty acids, and altered gut microbiota. Glutamine supplementation counteracted these effects by inhibiting the Toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) pathway, modulating nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) oxidative stress proteins, and increasing mammalian target of rapamycin (mTOR) levels, thereby enhancing microbial diversity and protecting intestinal mucosa. CONCLUSIONS: These findings underscore glutamine's potential in preventing 5-FU-induced mucositis by modulating gut microbiota and inflammation pathways.
Asunto(s)
Fluorouracilo , Microbioma Gastrointestinal , Glutamina , Mucosa Intestinal , Mucositis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Fluorouracilo/efectos adversos , Glutamina/farmacología , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Mucositis/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Ratones Endogámicos ICR , Masculino , Receptor Toll-Like 4/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Disbiosis/inducido químicamente , Disbiosis/tratamiento farmacológico , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Antimetabolitos Antineoplásicos/efectos adversos , Hemo-Oxigenasa 1/metabolismoRESUMEN
Turmeric, derived from Curcuma longa, and Lactobacillus paracasei, a lactic acid bacteria, have been studied for their potential antiobesity effects. To date, the antiobesity effects of turmeric fermented with L. paracasei have not been sufficiently investigated. This study was conducted via oral administration of 5% L. paracasei-fermented (FT) and unfermented turmeric (UT) in diet over 16 weeks using high-fat diet (HFD)-induced obese C57BL/6J mice. Results showed that the curcuminoid content of turmeric decreased following fermentation. Furthermore, FT significantly suppressed weight gain and liver and visceral adipose tissue weight and reduced plasma metabolic parameters in both the UT and FT experimental groups. The effects of FT were more noticeable than those of the unfermented form. Moreover, FT downregulated the expression of adipogenesis, lipogenesis, and inflammatory-related protein, but upregulated liver ß-oxidation protein SIRT 1, PPARα, and PGC-1α in perigonadal adipose tissue. Additionally, FT ameliorated insulin resistance by activating insulin receptor pathway protein expressions in visceral adipose tissues. FT also modulated gut microbiota composition, particularly in two beneficial bacteria, Akkermansia muciniphila and Desulfovibrio, as well as two short-chain fatty acid-producing bacteria: Muribaculum intestinale and Deltaproteobacteria. Our findings indicate that the modulation effect of FT may be an important pathway for its antiobesity mechanisms.
Asunto(s)
Curcuma , Dieta Alta en Grasa , Fermentación , Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Ratones Endogámicos C57BL , Obesidad , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Obesidad/microbiología , Ratones , Curcuma/química , Curcuma/metabolismo , Masculino , Lacticaseibacillus paracasei/metabolismo , Humanos , Fármacos Antiobesidad/administración & dosificación , Adipogénesis/efectos de los fármacos , Hígado/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , PPAR alfa/metabolismo , PPAR alfa/genética , Resistencia a la Insulina , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/efectos de los fármacosRESUMEN
Some thermal degradants of curcuminoids have demonstrated moderate health benefits in previous studies. Feruloyl acetone (FER), recently identified as a thermal degradant of curcumin, has been previously associated with anticancer and antioxidative effects, yet its other capabilities remain unexplored. Moreover, earlier reports suggest that methoxy groups on the aromatic ring may influence the functionality of the curcuminoids. To address these gaps, an animal study was conducted to investigate the antiobesity effects of both FER and its demethoxy counterpart (DFER) on mice subjected to a high-fat diet. The results demonstrated the significant prevention of weight gain and enlargement of the liver and various adipose tissues by both samples. Furthermore, these supplements exhibited a lipid regulatory effect in the liver through the adiponectin/AMPK/SIRT1 pathway, promoted thermogenesis via AMPK/PGC-1α activation, and positively influenced gut-microbial-produced short-chain fatty acid (SCFA) levels. Notably, DFER demonstrated superior overall efficacy in combating obesity, while FER displayed a significant effect in modulating inflammatory responses. It is considered that SCFA may be responsible for the distinct effects of FER and DFER in the animal study. Future studies are anticipated to delve into the efficacy of curcuminoid degradants, encompassing toxicity and pharmacokinetic evaluations.
Asunto(s)
Fármacos Antiobesidad , Curcumina , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Animales , Curcumina/química , Curcumina/farmacología , Curcumina/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Masculino , Fármacos Antiobesidad/química , Fármacos Antiobesidad/administración & dosificación , Humanos , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/química , Termogénesis/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/químicaRESUMEN
SCOPE: Metabolic syndrome (MetS) significantly contributes to premature mortality, with obesity being a major risk factor. Dragon fruit, cultivated globally, exhibits bioactivity in preventing obesity-related diseases. Traditional studies using organic solvents for extraction do not align with actual consumption patterns. METHOD AND RESULTS: This study evaluates whole red dragon fruit's effectiveness in ameliorating metabolic disorders using a high-fat diet-induced obesity model in mice for 20 weeks. The experimental groups include the supernatant (RS), precipitate (RP), and pomace (PO) of red dragon fruit juice, compared to the supernatant of white dragon fruit juice (WS). The study finds that dragon fruit extracts reduced adipose tissue weight, body fat percentage, pro-inflammatory cytokines, and improved blood lipid profiles. RP is the most effective, reducing body weight by 4.33 g, improving lipid metabolism and glucose homeostasis, and altering gut microbiota to enhance beneficial bacteria and short-chain fatty acids. RP's efficacy in preventing MetS and obesity is attributed to its bioactive components. CONCLUSION: These findings advocate for using whole fruits in developing functional products, amplifying the agricultural economic value of red dragon fruit.
RESUMEN
Liver fibrosis occurs due to injury or inflammation, which results in the excessive production of collagen and the formation of fibrotic scar tissue that impairs liver function. Despite the limited treatment options available, freshwater clams may hold promise in the treatment of liver fibrosis. In this study, we demonstrated the effects of ethanol extract of freshwater clam (FCE), ethyl acetate extract of FCE (EA-FCE), and trans-2-nonadecyl-4-(hydroxymethyl)-1,3-dioxolane (TNHD) on liver fibrosis induced by dimethylnitrosamine (DMN). Administration of FCE and TNHD alleviated liver injury, including tissue damage, necrosis, inflammation scores, fibrosis scores, serum enzymes, and triglyceride levels. Furthermore, we analyzed the expression of fibrosis-related proteins, such as α-smooth muscle actin (α-SMA) and transforming growth factor (TGF-ß), as well as the hydroxyproline content, which decreased after treatment with FCE and TNHD. Animal experiments revealed that FCE and TNHD can reduce liver fibrosis by inhibiting cytokines that activate stellate cells and decreasing extracellular matrix (ECM) secretion. Cell experiments have shown that TNHD inhibits the MAPK/Smad signaling pathway and TGF-ß1 activation, resulting in a reduction in the expression of fibrosis-related proteins. Therefore, freshwater clam extracts, particularly TNHD, may have potential therapeutic and preventive effects for the amelioration of liver fibrosis.
Asunto(s)
Bivalvos , Dimetilnitrosamina , Dioxolanos , Animales , Dimetilnitrosamina/toxicidad , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Bivalvos/genética , InflamaciónRESUMEN
Obesity is a global health crisis, marked by excessive fat in tissues that function as immune organs, linked to microbiota dysregulation and adipose inflammation. Investigating the effects of Lactobacillus rhamnosus SG069 (LR069) and Lactobacillus brevis SG031 (LB031) on obesity and lipid metabolism, this research highlights adipose tissue's critical immune-metabolic role and the probiotics' potential against diet-induced obesity. Mice fed a high-fat diet were treated with either LR069 or LB031 for 12 weeks. Administration of LB031 boosted lipid metabolism, indicated by higher AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and increased the M2/M1 macrophage ratio, indicating LB031's anti-inflammatory effect. Meanwhile, LR069 administration not only led to significant weight loss by enhancing lipolysis which evidenced by increased phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) but also elevated Akkermansia and fecal acetic acid levels, showing the gut microbiota's pivotal role in its antiobesity effects. LR069 and LB031 exhibit distinct effects on lipid metabolism and obesity, underscoring their potential for precise interventions. This research elucidates the unique impacts of these strains on metabolic health and highlights the intricate relationship between gut microbiota and obesity, advancing our knowledge of probiotics' therapeutic potential.
RESUMEN
Inflammatory bowel disease alters the gut microbiota, causes defects in mucosal barrier function, and leads to dysregulation of the immune response to microbial stimulation. This study investigated and compared the efficacy of a candidate probiotic strain, Bacillus coagulans BC198, and its heat-killed form in treating dextran sulfate sodium-induced colitis. Both live and heat-killed B. coagulans BC198 increased gut barrier-associated protein expression, reduced neutrophil and M1 macrophage infiltration of colon tissue, and corrected gut microbial dysbiosis induced by colitis. However, only live B. coagulans BC198 could alleviate the general symptoms of colitis, prevent colon shortening, and suppress inflammation and tissue damage. At the molecular level, live B. coagulans BC198 was able to inhibit Th17 cells while promoting Treg cells in mice with colitis, reduce pro-inflammatory MCP-1 production, and increase anti-inflammatory IL-10 expression in the colonic mucosa. The live form of B. coagulans BC198 functioned more effectively than the heat-killed form in ameliorating colitis by enhancing the anti-inflammatory response and promoting Treg cell accumulation in the colon.
RESUMEN
BACKGROUND/PURPOSE: Little is known about whether Asian children with epilepsy have more attention-deficit hyperactivity disorder (ADHD)-related symptoms, emotional/ behavioral problems, and physical conditions compared with those described in Western studies. The authors investigated the rates of ADHD-related symptoms, emotional/behavioral problems, and physical conditions among pediatric patients with epilepsy. METHODS: We recruited 61 patients with epilepsy, aged 6-16 years, and 122 age-, sex-, and parental education-matched school controls. Data on demographics, parental reports on the Child Behavior Checklist (CBCL) and Swanson, Nolan, and Pelham, version IV scale (SNAP-IV), and medical records were collected. RESULTS: The average full-scale intelligence quotient of the case group was 95.8. There were 11 (18.0%), 7 (11.5%), 26 (42.6%), and 26 (42.6%) of children with epilepsy ever clinically diagnosed with developmental delay, overt ADHD symptoms, allergies reported by physicians, and behavior problems measured by the CBCL, respectively. Those children with epilepsy had more severe ADHD-related symptoms and a wider range of emotional/behavioral problems than controls (Cohen's d 0.36-0.80). The rate of potential cases of ADHD among children with epilepsy was 24.6%. A history of developmental delay predicted ADHD- related symptoms and internalizing and externalizing problems. Among children with epilepsy, a longer duration of treatment with antiepileptic drugs predicted externalizing problems, and an earlier onset of epilepsy predicted inattention and hyperactivity/impulsivity. CONCLUSION: Our findings imply that clinicians should assess physical and emotional/behavioral problems among children with epilepsy in order to provide interventions to offset possible adverse psychiatric outcomes.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastornos de la Conducta Infantil/epidemiología , Epilepsia/epidemiología , Epilepsia/psicología , Hipersensibilidad/epidemiología , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Taiwán/epidemiologíaRESUMEN
The era of next-generation sequencing has increased the pace of gene discovery in the field of pediatric movement disorders. Following the identification of novel disease-causing genes, several studies have aimed to link the molecular and clinical aspects of these disorders. This perspective presents the developing stories of several childhood-onset movement disorders, including paroxysmal kinesigenic dyskinesia, myoclonus-dystonia syndrome, and other monogenic dystonias. These stories illustrate how gene discovery helps focus the research efforts of scientists trying to understand the mechanisms of disease. The genetic diagnosis of these clinical syndromes also helps clarify the associated phenotypic spectra and aids the search for additional disease-causing genes. Collectively, the findings of previous studies have led to increased recognition of the role of the cerebellum in the physiology and pathophysiology of motor control-a common theme in many pediatric movement disorders. To fully exploit the genetic information garnered in the clinical and research arenas, it is crucial that corresponding multi-omics analyses and functional studies also be performed at scale. Hopefully, these integrated efforts will provide us with a more comprehensive understanding of the genetic and neurobiological bases of movement disorders in childhood.
RESUMEN
Inflammatory bowel disease (IBD) is a chronic, nonspecific inflammation of the intestines that primarily comprises Crohn's disease and ulcerative colitis. The incidence and prevalence of IBD have been increasing globally, highlighting the significance of research and prophylactic interventions. Virofree, a mixture of various botanical extracts (including grapes, cherries, olive leaves, marigolds, green tea, and others), has shown significant potential in disease prevention. This study examined the effects of Virofree on intestinal inflammation and the gut microbiota in mice using a dextran sulfate sodium (DSS)-induced model. The mice showed no adverse reactions when administered Virofree. Virofree administration reduced the disease activity index as indicated by amelioration of DSS-induced symptoms in the mice, including weight loss, diarrhea, and rectal bleeding. Regarding the gut microbiota, Virofree intervention modulated the DSS-induced decrease in gut microbial diversity; the Virofree group showed no increase in the phyla Proteobacteria or Verrucomicrobia while displaying an increase in the genus Duncaniella, bacteria that may have protective properties. These findings suggest that Virofree may have a direct or indirect impact on the composition of the gut microbiota and that it can alleviate the imbalance of the microbiome and intestinal inflammation caused by DSS treatment.
RESUMEN
Inflammatory bowel disease has become a significant health concern across the globe, causing frequent and long-term harm to the digestive system. This study evaluated the effect of piceatannol (PIC) and 3'-hydroxypterostilbene (HPSB) on dextran sulfate sodium (DSS)-induced colitis in mice and investigated whether their effects are exerted through the amelioration of gut barrier dysfunction to reduce the severity of colitis. The findings showed that both PIC and HPSB attenuated inflammation by inhibiting the TNF-α/NF-κB/MLC pathway and reducing NLRP3 inflammasome activation. However, PIC was comparably effective in modulating tight junctions. The results may be attributed to the effect of PIC on reducing cell apoptosis-associated protein expression, including Bax/Bcl-2 and caspase-3 activation. Furthermore, microbiota analysis revealed that both PIC and HPSB increased representative probiotic species, including Akkermansiaceae and Lactobacillus intestinalis, and exhibited inhibitory effects on several bacterial species (Spiroplasmataceae and Acholeplasmataceae). Based on linear discriminant analysis effect size, butyrate-producing bacteria were identified as a biomarker in the PIC group. Overall, the results demonstrated that PIC repressed inflammation, inhibited cell apoptosis, and regulated microbiota composition. Consequently, PIC is more effective in maintaining gut barrier integrity than HPSB, and it is a promising ingredient in the development of functional food for colitis prevention.
Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ratones Endogámicos C57BLRESUMEN
Benzo[a]pyrene (B[a]P) is a genotoxic polycyclic aromatic hydrocarbon that is metabolized by cytochrome P450 family 1 enzymes (CYP 1s) and can bind to DNA to form DNA adducts, leading to DNA damage and increased colorectal cancer risk. Previous studies have shown polymethoxyflavones to have a high potential for anticancer effects by regulating CYP 1s, especially nobiletin (NBT) and 5-demethylnobiletin (5-DMNB). However, the effects of NBT and 5-DMNB on B[a]P metabolism remain unclear. Therefore, this study aimed to clarify the effects of NBT and 5-DMNB on B[a]P-induced DNA damage in vitro and in vivo. In NCM460 cells, 5-DMNB and NBT appeared to reduce the metabolic conversion of B[a]P by regulating the aryl hydrocarbon receptor (AhR)/CYP 1s signaling pathway. This process protected NCM460 cells from B[a]P's cytotoxic effects by decreasing DNA damage and suppressing B[a]P diol-epoxide-DNA adduct formation. In BALB/c mice, 5-DMNB and NBT also protected against B[a]P-induced DNA damage. Altogether, these findings indicate that 5-DMNB and NBT attenuate B[a]P-induced DNA damage by modulating biotransformation, highlighting their chemopreventive potential against B[a]P-induced carcinogenesis. Therefore, 5-DMNB and NBT are promising agents for colorectal cancer chemoprevention in the future.
Asunto(s)
Benzo(a)pireno , Neoplasias Colorrectales , Ratones , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Xenobióticos , Daño del ADN , Aductos de ADN , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genéticaRESUMEN
Soil dissolved organic carbon (DOC) is the most active part in forest soil carbon pool, the responses of which to climate warming has profound effects on forest carbon cycling. Based on a manipulative soil warming experiment in subtropical evergreen broad-leaved forests, we collected soil solutions in situ and used ultraviolet-visible, infrared and three-dimensional fluorescence spectroscopy analyses to explore the effects of soil warming (+4 â, 1 year) on soil DOC quantity and quality along the soil profile. The results showed that soil DOC flux remained constant along the soil profile. Soil DOC mainly included two humic-like fractions and one microbial metabolite. Warming significantly decreased soil DOC flux and the abundance of aromatic and hydrophobic components, and increased the amount of low molecular weight carbohydrates. Furthermore, soil warming increased the relative proportion of humic-like fractions in the surface soil layer (0-10 cm) and microbial metabolite in the deep soil layer (30-40 cm), indicating that warming might accelerate microbial turnover in the deep layer. Overall, soil warming not only decreased soil DOC content, but also simplified the composition of soil DOC in subtropical evergreen broad-leaved forests.
Asunto(s)
Materia Orgánica Disuelta , Suelo , Suelo/química , Nitrógeno/análisis , Bosques , Carbono/análisis , ChinaRESUMEN
Evidence shows that the dietary intake of polycyclic aromatic hydrocarbons (PAHs) from food processing induces the cellular DNA damage response and leads to the development of colorectal cancer (CRC). Therefore, protecting from cellular DNA damage might be an effective strategy in preventing CRC. Benzo[a]pyrene (B[a]P) was used as a CRC initiator in the present study. Compared with other stilbenoids, piceatannol (PIC) showed the most effective inhibition of B[a]P-induced cytochrome P450 1B1 (CYP1B1) protein expression in NCM460 normal human colon epithelial cells. PIC treatment alleviated DNA migration and enhanced the expression of DNA-repair-related proteins, including histone 2AX (H2AX), checkpoint kinase 1 (Chk1), and p53, in B[a]P-induced NCM460 cells. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA) revealed that PIC exerted antioxidative effects on NCM460 cells by increasing the glutathione (GSH) content and scavenging the excess intracellular reactive oxygen species (ROS) induced by B[a]P. Furthermore, PIC suppressed B[a]P-induced CYP1B1 protein expression and stimulated miR-27b-3p expression. The upregulation of phase II detoxification enzymes, such as nicotinamide adenine dinucleotide phosphate (NADPH) and quinone oxidoreductase 1 (NQO1), and the antioxidative enzyme, heme oxygenase 1 (HO-1), via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was observed in the PIC-treated group. Our results suggest that PIC is a potential CRC-blocking agent due to its ability to alleviate DNA damage, decrease intracellular ROS production, modulate the metabolism and detoxification of B[a]P, and activate the Nrf2 signaling pathway in B[a]P-induced NCM460 cells.
Asunto(s)
Benzo(a)pireno , Estilbenos , Humanos , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Daño del ADN , Estilbenos/farmacología , Estilbenos/metabolismo , Células Epiteliales/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismoRESUMEN
SCOPE: This study aims to investigate whether S-allylcysteine (SAC) exerts chemoprophylactic effects on foodborne carcinogenicity caused by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in normal human colonic mucosal epithelial cells. METHODS AND RESULTS: Cellular thermal shift assays show that SAC has an affinity for the Kelch-like ECH-associated protein 1 (Keap1) protein. Moreover, SAC may also dampen the binding of Keap1 and NF-E2-related factor 2 (Nrf2) by inhibiting p-p38 and increasing the phosphorylation of extracellular signal regulated kinases 1/2 (ERK1/2) and protein kinase B (AKT), thereby inducing Nrf2/heme oxygenase-1 (HO-1) signaling and upregulating the ratio of glutathione (GSH) to GSH/GSSG (oxidized glutathione), which inhibits PhIP-induced oxidative stress and DNA damage. In addition, SAC significantly downregulates the aryl hydrocarbon receptor signaling pathway, suggesting that SAC may potentially impede the metabolic transformation of carcinogens. CONCLUSION: Collectively, these findings suggest that SAC protects against PhIP-induced reactive oxygen species production and DNA damage by modulating the Nrf2/AhR signaling pathway, which may have significant potential as a novel chemopreventive agent.