Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Chem ; 10: 851264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392420

RESUMEN

Solid-state electrolyte (SSE), as the core component of solid-state batteries, plays a critical role in the performance of the batteries. Currently, the development of SSE is still hindered by its high price, low ionic conductivity, and poor interface stability. In this work, we report the tailored synthesis of a high ionic conductive and low cost sulfide SSE for all-solid-state lithium batteries. The Li10.35Si1.35P1.65S12 with favorable tetragonal structure was synthesis by increasing the concentration of Si4+, which shows an ionic conductivity of 4.28 × 10-3 S cm-1 and a wide electrochemical stability window of up to 5 V. By further modifying the composition of the electrolyte via ionic doping, the ionic conductivity of Li10.35Si1.35P1.65S12 can be further enhanced. Among them, the 1% Co4+-doped Li10.35Si1.35P1.65S12 shows the highest ionic conductivity of 6.91 × 10-3 S cm-1, 40% higher than the undoped one. This can be attributed to the broadened MS4 - tetrahedrons and increased Li+ concentration. As a demonstration, an all-solid-state Li metal battery was assembled using TiS2 as the cathode and 1% Co4+-doped Li10.35Si1.35P1.65S12 as the electrolyte, showing capacity retention of 72% at the 110th cycle. This strategy is simple and can be easily extended for the construction of other high-performance sulfide SSEs.

2.
Chemosphere ; 307(Pt 4): 136078, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35985382

RESUMEN

Identification of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in the dynamic cake layer of a full-scale anoixc dynamic membrane bioreactor (AnDMBR) for treating hotel laundry wastewater was studied. A series of experiments were conducted to understand the contributions of DNRA and canonical denitrification activities in the dynamic cake layer of the AnDMBR. The dynamic cake layer developed included two phases - a steady transmembrane pressure (TMP) increase at 0.24 kPa/day followed by a sharp TMP jump at 1.26 kPa/day four to five days after the AnDMBR start-up. The nitrogen mass balance results showed that canonical denitrification was predominant during the development of the dynamic cake layer. However, DNRA activity and accumulation of bacteria equipped with a complete DNRA pathway showed a positive correlation to the development of the dynamic cake layer. Our metagenomic analysis identified an approximately 18% of the dynamic cake layer bacterial community has a complete DNRA pathway. Pannonibacter (1%), Thauera (0.8%) and Pseudomonas (3%) contained all genes encoding for funcional enzymes of both DNRA (nitrate reductase and DNRA nitrite reductase) and denitrification (nitrate reductase, nitrous oxide reductase and nitric oxide reductase). No other metagenome-assembled genomes (MAGs) possessed a complete cononical denitrification pathway, indicating food-chain-like interactions of denitrifiers in the dynamic cake layer. We found that COD loading rate could be used to control DNRA and canonical denitrification activities during the dynamic cake layer formation.


Asunto(s)
Compuestos de Amonio , Compuestos de Amonio/metabolismo , Bacterias/genética , Bacterias/metabolismo , Reactores Biológicos , Desnitrificación , Nitratos/análisis , Nitrito Reductasas/metabolismo , Nitrógeno/metabolismo , Óxidos de Nitrógeno , Compuestos Orgánicos , Oxidación-Reducción , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA