RESUMEN
Excessive cardiac fibrosis and inflammation aberrantly contribute to the progressive pathogenesis of arrhythmogenic cardiomyopathy (ACM). Whether sodium-glucose cotransporter-2 inhibitor (SGLT2i), as a new hypoglycemic drug, benefits ACM remains unclear. Cardiomyocyte-specific Dsg2 exon-11 knockout and wild-type (WT) littermate mice were used as the animal model of ACM and controls, respectively. Mice were administered by gavage with either SGLT2i dapagliflozin (DAPA, 1 mg/kg/day) or vehicle alone for 8 weeks. HL-1 cells were treated with DAPA to identify the molecular mechanism in vitro. All mice presented normal glucose homeostasis. DAPA not only significantly ameliorated cardiac dysfunction, adverse remodeling, and ventricular dilation in ACM but also attenuated ACM-associated cardiac fibrofatty replacement, as demonstrated by the echocardiography and histopathological examination. The protein expressions of HIF-2α and HIF-1α were decreased and increased respectively in cardiac tissue of ACM, which were compromised after DAPA treatment. Additionally, NF-κB P65 and IκB phosphorylation, as well as fibrosis indicators (including TGF-ß, α-SMA, Collagen I, and Collagen III) were increased in ACM. However, these trends were markedly suppressed by DAPA treatment. Consistent with these results in vitro, DAPA alleviated the IκB phosphorylation and NF-κB p65 transcriptional activity in DSG2-knockdown HL-1 cells. Interestingly, the elective HIF-2α inhibitor PT2399 almost completely blunted the DAPA-mediated downregulation of indicators concerning cardiac fibrosis and inflammation. SGLT2i attenuated the ACM-associated cardiac dysfunction and adverse remodeling in a glucose-independent manner by suppressing cardiac fibrosis and inflammation via reverting the HIF-2α signaling pathway, suggesting that SGLT2i is a novel and available therapy for ACM.
Asunto(s)
Cardiomiopatías , Diabetes Mellitus Tipo 2 , Cardiopatías , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Compuestos de Bencidrilo/farmacología , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Colágeno , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fibrosis , Glucosa , Glucósidos , Inflamación/tratamiento farmacológico , Ratones , FN-kappa B/metabolismo , Transducción de Señal , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéuticoRESUMEN
Restrictive cardiomyopathy (RCM) is an uncommon cardiac muscle disease characterized by impaired ventricular filling and severe diastolic dysfunction with or without systolic dysfunction. The patients with RCM present poor prognosis and high prevalence of sudden cardiac death, especially in the young. The etiology of RCM may be idiopathic, familial or acquired predispositions from various systemic diseases. The genetic background of familial RCM is often caused by mutations in genes encoding proteins of sarcomeres and a significant minority by mutations in non-sarcomeric proteins and transthyretin proteins. It is important to identify the associations between genotype and phenotype to guide clinical diagnosis and treatment. Here, we have summarized the reported index cases with RCM involving genetic etiology to date and highlighted the most significant phenotype results.
RESUMEN
INTRODUCTION: Long QT syndrome (LQTS) is a life-threatening inherited channelopathy, and prolonged QT intervals easily trigger malignant arrhythmias, especially torsades de pointes and ventricular fibrillation. MATERIALS AND METHODS: The proband with overlapped phenotypes of LQTS and sinoatrial node dysfunction underwent some necessary examinations, including echocardiography, electrocardiogram (ECG), and Holter monitoring. Next, whole-exome sequencing was performed, and candidate genes were validated by Sanger sequencing. RNA secondary structure and protein physical-chemical parameter analyses were used to predict the possible structural change of the proteins induced by the mutations. RESULTS: We identified the digenic heterozygous mutations of KCNH2 p.307_308del (NM_001204798, c.921_923del) and SCN5A p.R1865H (NM_001160160, c.G5594A) in the female and young proband (II: 1) of LQTS and ventricular fibrillation with repeat syncope at rest. Subsequently, she occurred with obvious sinus arrest with persistent ventricular pacing of implantable cardioverter-defibrillator. The heterozygous SCN5Ap.R1865H was carried by her father and sister but not carried by I:2. II:1 carried with KCNH2 p.307_308del as a de novo mutation, but not existed in other family members. RNA secondary structure of KCNH2 p.307_308del showed a false regional double helix, and its amino acids' hydrophobicity was significantly weakened. For the Nav 1.5 protein property, SCN5A p.R1865H slightly increased the molecular weight and aliphatic index but reduced the instability index. CONCLUSIONS: The digenic heterozygous KCNH2 and SCN5A mutations were associated with young early-onset long QT syndrome and sinoatrial node dysfunction.
Asunto(s)
Síndrome de QT Prolongado , Nodo Sinoatrial , Canal de Potasio ERG1/genética , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/genética , Femenino , Humanos , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5RESUMEN
BACKGROUND: The whole exome sequencing (WES) with targeted gene analysis is an effective diagnostic tool for cardiomyopathy. The early-onset sudden cardiac death (SCD) was commonly associated with dilated cardiomyopathy (DCM) induced by pathogenic genetic mutations. METHODS: In a Chinese Han family, the patient of 24 years old occurred with early-onset and DCM and died of SCD associated with ICD storms induced by repetitive ventricular tachycardia/fibrillation (VT/F). Genomic DNA samples of peripheral blood were conducted for WES and Sanger sequence. Then, we performed bioinformatics analysis for 200 genes susceptible to cardiomyopathies and arrhythmias. Further, we analyzed how the potential pathogenic mutations affecting the secondary structure, hydrophobicity, and phosphorylation of amino acids, protein properties, and their joint pathogenicity by ProtParam, SOPMA, and ORVAL algorisms. The protein-protein interaction was analyzed by STRING algorism. RESULTS: The mutations of LDB3 p.M456R, MYH6 p.S180Y, and SYNE1 p.S4607F were identified as "Damaging/Deleterious." The SYNE1 (p.S4607F) increased one of alpha helix and decreased one of beta sheet. The LDB3 (p.M456R) reduced one of beta sheet and increased one of beta turn. The MYH6 (p.S180Y) decreased two of beta sheets and four of beta turns, but significantly increased twelve coils. The hydrophobicity of amino acid residues and their adjacent sequences were decreased by LDB3 (p.M456R) and MYH6 (p.S180Y), and significantly increased by SYNE1 (p.S4607F). The mutations of LDB3 (p.M456R), SYNE1 (p.S4607F), and MYH6 (p.S180Y) resulted in the phosphorylation changes of the corresponding amino acid sites or the nearby amino acid sites. The pairwise combinations of LDB3, MYH6, and SYNE1 mutations have the high probability of causing disease, especially the highest probability for SYNE1 and LDB3 mutations. There was obviously indirect interaction of the proteins encoded by SYNE1, LDB3, and MYH6. CONCLUSIONS: The multiple heterozygous mutations of SYNE1, LDB3, and MYH6 may be associated with young and early-onset of DCM and SCD.
Asunto(s)
Cardiomiopatía Dilatada , Taquicardia Ventricular , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Miosinas Cardíacas/genética , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Proteínas del Citoesqueleto , Muerte Súbita Cardíaca/etiología , Electrocardiografía , Humanos , Proteínas con Dominio LIM , Mutación Missense , Cadenas Pesadas de Miosina/genética , Proteínas del Tejido Nervioso , Linaje , Adulto JovenRESUMEN
OBJECTIVES: Coronavirus disease 2019 (Covid-19) is outbreaking globally. We aimed to analyse the clinical characteristics, cardiac injury, electrocardiogram and computed tomography (CT) features of patients confirmed Covid-19 and explored the prediction models for the severity of Covid-19. METHODS: A retrospective and single-centre study enrolled 98 laboratory-confirmed Covid-19 patients. Clinical data, electrocardiogram and CT features were collected and analysed using Statistical Package for the Social Sciences software. RESULTS: There were 46 males and 52 females, with a median age of 44 years, categorised into three groups, including mild, moderate and severe/critical Covid-19. The rate of abnormal electrocardiograms in severe/critical group (79%) was significantly higher than that in the mild group (17%) (P = .027), which (r = 0.392, P = .005) positively related to the severity of Covid-19 (OR: 5.71, 95% CI: 0.45-3.04, P = .008). Age older than 60 years old, comorbidities, whether had symptoms on admission, fatigue, CT features, laboratory test results such as platelet count, lymphocyte cell count, eosinophil cell count, CD3+ cell count, CD4+ cell count, CD8+ cell count, the ratio of albumin/globulin decreased and D-dimer, C-reactive protein (CRP), B-type natriuretic peptide (BNP), cardiac troponin I (cTnI) elevated were the risk factors for the increased severity of Covid-19. The logistic model, adjusted by age, lobular involvement score and lymphocyte cell count, could be applied for assessing the severity of Covid-19 (AUC, 0.903; Sensitivity, 90.9%; Specificity, 78.1%). CONCLUSIONS: Age >60 years old, chronic comorbidities, lymphocytopoenia and lobular involvement score were associated with the Covid-19 severity. The inflammation induced by Covid-19 caused myocardial injury with elevated BNP and cTnI level and abnormal electrocardiograms.
Asunto(s)
COVID-19 , Adulto , China , Femenino , Humanos , Recuento de Leucocitos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la EnfermedadRESUMEN
OBJECTIVE: Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. About half of sudden deaths from AMI are mainly because of malignant ventricular arrhythmias (VA) after AMI. The sodium channel gene SCN5A and potassium channel genes KCNQ1 and KCNH2 have been widely reported to be genetic risk factors for arrhythmia including Brugada syndrome and long QT syndrome (LQTS). A few studies reported the association of SCN5A variant with ventricular tachycardia (VT)/ventricular fibrillation (VF) complicating AMI. However, little is known about the role of KCNQ1 and KCNH2 in AMI with VA (AMI_VA). This study focuses on investigating the potential variants on SCN5A, KCNQ1, and KCNH2 contributing to AMI with VA in a Chinese population. MATERIALS AND METHODS: In total, 139 patients with AMI_VA, and 337 patients with AMI only, were included. Thirty exonic sites were selected to be screened. Sanger sequencing was used to detect variants. A subsequent association study was also performed between AMI_VA and AMI. RESULTS: Twelve variants [5 on KCNH2(NM_000238.3), 3 on KCNQ1(NM_000218.2), and 4 on SCN5A(NM_198056.2)] were identified in AMI_VA patients. Only 5 (KCNH2: c.2690A>C; KCNQ1: c.1927G>A, c.1343delC; SCN5A: c.1673A>G, c.3578G>A) of them are missense variants. Two (KCNQ1: c.1343delC and SCN5A: c.3578G>A) of the missense variants were predicted to be clinically pathogenic. All these variants were further genotyped in an AMI without VA group. The association study identified a statistically significant difference in genotype frequency of KCNH2: c.1539C>T and KCNH2: c.1467C>T between the AMI and AMI_VA groups. Moreover, 2 rare variants (KCNQ1: c.1944C>T and SCN5A: c.3621C>T) showed an elevated allelic frequency (more than 1.5-fold) in the AMI_VA group when compared to the AMI group. CONCLUSION: Twelve variants (predicting from benign/VUS to pathogenic) were identified on KCNH2, KCNQ1, and SCN5A in patients with AMI_VA. Genotype frequency comparison between AMI_VA and AMI identified 2 significant common variants on KCNH2. Meanwhile, the allelic frequency of 2 rare variants on KCNQ1 and SCN5A, respectively, were identified to be enriched in AMI_VA, although there was no statistical significance. The present study suggests that the ion-channel genes KCNH2, KCNQ1, and SCN5A may contribute to the pathogenesis of VA during AMI.
Asunto(s)
Canal de Potasio ERG1/genética , Canal de Potasio KCNQ1/genética , Infarto del Miocardio/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fibrilación Ventricular , Enfermedad Aguda , Anciano , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Infarto del Miocardio/genéticaRESUMEN
INTRODUCTION: Long QT syndrome (LQTS) increases the risk of life-threatening arrhythmia in young individuals with structurally normal hearts. Sixteen genes such as the KCNQ1, KCNH2, and SCN5A have been reported for association with LQTS. CASE PRESENTATION: We identified the compound heterozygous mutations in the KCNQ1 gene at c. G527A (p.W176X) and c.G1765A (p.G589S) predicted as "damaging." The in-silico analysis showed that when compared to the characteristics of mRNA and protein of wild-type KCNQ1, the mRNA of c.G527A mutation was significantly different in the centroid secondary structure. The subunit coded by W176X would lose the transmembrane domains S3-S6 and helices A-D. The protein secondary structure of G589S was slightly shortened in helix structure; the protein physics-chemical parameters of W176X and G589S significantly and slightly changed, respectively. CONCLUSIONS: The compound heterozygous mutations of W176X and G589S coexisting in KCNQ1 gene of homologous chromosomes, resulting in more severe phenotype, are the likely pathogenic and genetic risks of LQTS and USD in this Chinese family.
Asunto(s)
Muerte Súbita , Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Mutación/genética , Femenino , Humanos , Persona de Mediana EdadRESUMEN
MicroRNAs (miRNAs) are widely expressed in organisms and are implicated in the regulation of most biological functions. The present study investigated the association of plasma miRNAs with the clinical outcomes of dual antiplatelet therapy in coronary artery disease (CAD) patients who underwent percutaneous coronary intervention (PCI). Plasma miRNA levels were screened using high-throughput Illumina sequencing to evaluate the antiplatelet efficacy of clopidogrel and aspirin. Six plasma miRNAs (miR-126, miR-130a, miR-27a, miR-106a, miR-21, and miR-142) were associated with clopidogrel-treated platelet aggregation. These miRNAs were validated in a prospective cohort of 1230 CAD patients using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). High plasma miR-142 levels were associated with a high risk of major adverse cardiovascular events (MACE), with a hazard ratio (95% confidence interval) of 1.83 (1.30-2.59) at a false discovery rate of <5%. Multivariable Cox regression analysis revealed that diabetes mellitus, heart failure, calcium channel blocker application, and a high plasma miR-142 level were independent risk factors of MACE. The levels of the six plasma miRNAs were not significantly associated with bleeding events during the 3-year follow-up. In conclusion, plasma miR-142 is potential marker to predict MACE in CAD patients after PCI.
Asunto(s)
Biomarcadores/sangre , Cardiopatías/diagnóstico , Hemorragia/diagnóstico , MicroARNs/sangre , Enfermedades Vasculares/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Aspirina/efectos adversos , Aspirina/uso terapéutico , Clopidogrel/efectos adversos , Clopidogrel/uso terapéutico , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Intervención Coronaria Percutánea , Inhibidores de Agregación Plaquetaria/efectos adversos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Pronóstico , Estudios ProspectivosRESUMEN
BACKGROUND: Sudden cardiac death (SCD) induced by malignant ventricular tachycardia (MVT) among young adults with right ventricular cardiomyopathy/dysplasia (ARVC/D) is a devastating event. Parts of ARVC/D patients have a mutation in genes encoding components of cardiac desmosomes, such as desmoglein-2 (DSG2), plakophilin-2 and desmoplakin. CASE PRESENTATION: Here we report a potentially pathogenic mutation in the DSG2 gene, which was identified in a family with ARVC/D using Whole Exome Sequencing (WES) and Sanger Sequencing. In all, Patient III:1 with ARVC/D carried the compound heterozygous mutations of DSG2 p.F531C and KCNE5 p.D92E/E93X, which were both inherited from her mother (II:2), who died of SCD. Carriers of DSG2p.F531C showed various phenotypes, such as ARVC/D, SCD, MVT and dilated cardiomyopathy. For III:1, there were significant low-voltage regions in the inferior-apical, inferior-lateral wall of the right ventricular epicardium and outflow tracts of the right ventricle. Under the guidance of a three-dimensional mapping system, MVT was successfully ablated with an epicardial-endocardial approach targeting for late, double or fragmental potentials after implantable cardioverter-defibrillator (ICD) electrical storms. No VT recurrence was observed during the one year of follow-up. CONCLUSIONS: When coexisting with heterozygous KCNE5 p.D92E/E93X, heterozygous DSG2 p.F531C as a genetic background was found to predispose to ARVC/D, SCD and MVT, which were successfully ablated using an epicardial-endocardial approach.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica/complicaciones , Muerte Súbita Cardíaca/etiología , Muerte Súbita/etiología , Desmogleína 2/genética , Mutación/genética , Canales de Potasio con Entrada de Voltaje/genética , Adulto , Displasia Ventricular Derecha Arritmogénica/genética , Femenino , Heterocigoto , Humanos , MasculinoRESUMEN
BACKGROUNDS: This study was designed to identify the pathogenic mutations in two Chinese families of arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) using the Whole Exome Sequencing (WES). METHODS AND RESULTS: The proband 1 (Family 1, II:1) and proband 2 (Family 2, II:1) underwent the WES of DNA from peripheral blood. The genes susceptible to arrhythmias and cardiomyopathies were analyzed and both the probands carried the same exonic mutation of DSG2 p.F531C (NM_001943, exon 11: c.T1592G). The proband 1 also carried the splicing mutation of DSG2 (NM_001943: exon 4:c.217-1G>T), and proband 2 carried the intronic mutation of DSG2 (NM_001943: exon 6: c.524-3C>G) that potentially influenced the splicing function predicted by Human Splicing Finder. The compound heterozygous mutations of the two probands inherited from their paternal and maternal side, respectively. The carriers with DSG2 p.F531C showed early abnormal electrocardiograms, characterized as the subclinical phenotype of ARVC/D. CONCLUSIONS: The DSG2 p.F531C was the main reason for ARVC/D. More severe phenotypes of ARVC/D occurred when coexisting with 217-1G>T or 524-3C>G mutation that potentially affecting the splicing function, as a compound heterozygous recessive inheritance.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Desmogleína 2/genética , Mutación , Adulto , Displasia Ventricular Derecha Arritmogénica/complicaciones , Ecocardiografía , Electrocardiografía , Femenino , Heterocigoto , Humanos , Masculino , Linaje , Fenotipo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología , Secuenciación del ExomaRESUMEN
OBJECTIVE: This study aimed to identify the pathogenic mutation in a Chinese family with unexplained sudden death (USD) or occasional syncope. MATERIALS AND METHODS: Whole exome sequencing and target capture sequencing were respectively conducted for two related patients. The genetic data was screened using the 1000 genomes project and SNP database (PubMed), and the identified mutations were assessed for predicted pathogenicity using the SIFT and Polyphen-2 algorithms. RESULTS: We identified a heterozygous mutation in the RYR2 gene at c.490C>T (p.P164S), highly conserved across all species, in three family members of USD, syncope and malignant ventricular tachycardias induced by treadmill exercise test, while another heterozygous de novo mutation in SCN5A at c.5576G>A p.R1859H was detected in one family member. Both variants were verified by Sanger sequencing. Importantly, RYR2 p.P164S is associated with the risk of sudden cardiac death, such as in catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS: A pathogenic mutation in RYR2 (p.P164S) is the likely cause of USD in a Chinese family associated with malignant ventricular arrhythmias. Whole exome and target capture sequencing can be useful for discovering the genetic causes of USD.
Asunto(s)
Muerte Súbita Cardíaca , Secuenciación del Exoma , Mutación/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Adolescente , Adulto , Anciano , Algoritmos , Pueblo Asiatico , Niño , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Síncope/genéticaRESUMEN
BACKGROUND: This study was designed to identify the pathogenic mutation in a Chinese family with arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) using whole genome sequencing (WGS). METHODS AND RESULTS: Probands II:1 and II:2 underwent routine examinations for diagnosis. Genomic DNA was extracted from the peripheral blood of family members and analyzed using WGS. A total of 60,285 single-nucleotide polymorphisms (SNP) and 13,918 insertions/deletions (InDel) occurring in the exonic regions of genes and predisposing to cardiomyopathies and arrhythmias were identified. When filtered using the 1000 Genomes Project (2014 version), NHLBI ESP6500, and ExAC databases, 12 missense SNP and 2 InDel in exonic regions remained, the allele frequencies of which were <0.01 or unknown. The potentially pathogenic mutations that occurred in the genes DSG2, PKP4, PRKAG2, FOXD4, CTTN, and DMD, which were identified by SIFT or PolyPhen-2 software as "damaging," were validated using Sanger sequencing. Probands II:1 and II:2 shared an extremely rare homozygous mutation in the DSG2 (p.F531C) gene, which was also demonstrated using intersection analysis of WGS data from probands II:1 and II:2. Electron microscopy and histological staining of myocardial biopsies showed widened and destroyed intercalated discs, and interrupted, atrophic, and disarranged myocardial fibers, and hyperplastic interstitial fibers, collagen fibers, and adipocytes were infiltrated and invaded. CONCLUSIONS: A homozygous mutation of DSG2 p.F531C was identified as the pathogenic mutation in patients with ARVC/D involving both ventricles, as a result of widened and impaired intercalated discs, interrupted myocardial fibers, and abnormally hyperplastic interstitial fibers, collagen fibers, and adipocytes.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica/diagnóstico por imagen , Displasia Ventricular Derecha Arritmogénica/genética , Desmogleína 2/genética , Miocardio/patología , Adolescente , Adulto , Pueblo Asiatico/genética , Ecocardiografía , Electrocardiografía , Frecuencia de los Genes , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Adulto JovenRESUMEN
AIMS: Research related to type 2 diabetes mellitus (DM) and parameters of electrocardiography (ECG) was limited. Patients with and without DM (NDM) were randomly enrolled in a study to exploit the influence of DM on planar QRS and T vectors derived from the Virtual Holter process. METHODS: A total of 216 (NDM) and 127 DM patients were consecutively and randomly recruited. We selected a 1-minute length of ECG, which was scheduled for analysis at 4 AM. After a series of calculating algorisms, we received the virtual planar vector parameters. RESULTS: Patients with DM were elderly (65.61 ± 12.08 vs 59.41 ± 16.86 years, P < 0.001); higher morbidity of hypertension (76.38% vs 58.14%, P < 0.001) and coronary artery disease (44.09% vs 32.41%, P = 0.03); thicker interventricular septum (10.92 ± 1.77 vs 10.08 ± 1.96 mm, P < 0.001) and left ventricular posterior wall (9.84 ± 1.38 vs 9.39 ± 1.66 mm, P = 0.03); higher lipid levels and average heart rate (66.67 ± 12.04 vs 61.87 ± 13.36 bpm, P < 0.01); higher angle of horizontal QRS vector (HQRSA, -2.87 ± 48.48 vs -19.00 ± 40.18 degrees, P < 0.01); lower maximal magnitude of horizontal T vector (HTV, 2.33 ± 1.47 vs 2.88 ± 1.89 mm, P = 0.01) and maximal magnitude of right side T vector (2.77 ± 1.55 vs 3.27 ± 1.92 mm, P = 0.03), and no difference in angle of frontal QRS-T vector (FQRSTA, 32.77 ± 54.20 vs 28.39 ± 52.87 degrees, P = 0.74) compared with patients having NDM. After adjusting for confounding factors, DM was significantly effective on FQRSTA (regression coefficient -40.0, 95%CI -66.4 to -13.6, P < 0.01), HQRSA (regression coefficient 22.6, 95%CI 2.5 to 42.8, P = 0.03), and HTV (regression coefficient 0.9, 95%CI 0.2 to 1.7, P = 0.01). Confounding factors included: sex, 2-hour postprandial blood glucose, smoking, triglyceride, apolipoprotein A, creatinine, left ventricular ejection fraction, and average heart rate. CONCLUSIONS: The risk factors of DM and lipid metabolism abnormality particularly apolipoprotein A significantly modified parameters of virtual planar QRS and T vector, including frontal QRS-T angle.
Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/diagnóstico , Electrocardiografía Ambulatoria , Anciano , Apoproteína(a)/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Cardiomiopatías Diabéticas/fisiopatología , Femenino , Humanos , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Distribución Aleatoria , Factores de RiesgoRESUMEN
Diabetes mellitus (DM) is one of the most important risk factors for atrial fibrillation (AF) and is a predictor of stroke and thromboembolism. DM may increase the incidence of AF, and when it is combined with other risk factors, the incidence of stroke and thromboembolism may also be higher; furthermore, hospitalization due to heart failure appears to increase. Maintenance of well-controlled blood glucose and low levels of HbA1c in accordance with guidelines may decrease the incidence of AF. The mechanisms of AF associated with DM are autonomic remodeling, electrical remodeling, structural remodeling, and insulin resistance. Inhibition of the renin-angiotensin system is suggested to be an upstream therapy for this type of AF. Studies have indicated that catheter ablation may be effective for AF associated with DM, restoring sinus rhythm and improving prognosis. Catheter ablation combined with hypoglycemic agents may further increase the rate of maintenance of sinus rhythm and reduce the need for reablation.
Asunto(s)
Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Ablación por Catéter/métodos , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/fisiopatología , Hipoglucemiantes/uso terapéutico , Terapia Combinada , Humanos , Resultado del TratamientoRESUMEN
BACKGROUND: Rapid atrial pacing (RAP) can induce electrical and autonomic remodeling and facilitate atrial fibrillation (AF). Recent reports showed that low-level vagosympathetic nerve stimulation (LLVNS) can suppress AF, as an antiarrhythmic effect. We hypothesized that LLVNS can reverse substrate heterogeneity induced by RAP. METHODS AND RESULTS: Mongrel dogs were divided into (LLVNS+RAP) and RAP groups. Electrode catheters were sutured to multiple atrial sites, and LLVNS was applied to cervical vagosympathetic trunks with voltage 50% below the threshold slowing sinus rate by ≤ 30 msec. RAP induced a significant decrease in effective refractory period (ERP) and increase in the window of vulnerability at all sites, characterized by descending and elevated gradient differences towards the ganglionic plexi (GP) sites, respectively. The ERP dispersion was obviously enlarged by RAP and more significant when the ERP of GP-related sites was considered. Recovery time from AF was also prolonged significantly as a result of RAP. LLVNS could reverse all these changes induced by RAP and recover the heterogeneous substrate to baseline. Conclusions. LLVNS can reverse the electrical and autonomic remodeling and abolish the GP-central gradient differences induced by RAP, and thus it can recover the homogeneous substrate, which may be the underlying mechanism of its antiarrhythmic effect.
Asunto(s)
Fibrilación Atrial/prevención & control , Fibrilación Atrial/fisiopatología , Sistema Nervioso Autónomo/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca , Animales , Perros , Resultado del TratamientoRESUMEN
Arrhythmogenic cardiomyopathy (ACM), a fatal heart disease characterized by fibroadipocytic replacement of cardiac myocytes, accounts for 20% of sudden cardiac death and lacks effective treatment. It is often caused by mutations in desmosome proteins, with Desmoglein-2 (DSG2) mutations as a common etiology. However, the mechanism underlying the accumulation of fibrofatty in ACM remains unknown, which impedes the development of curative treatment. Here we investigated the fat accumulation and the underlying mechanism in a mouse model of ACM induced by cardiac-specific knockout of Dsg2 (CS-Dsg2 -/-). Heart failure and cardiac lipid accumulation were observed in CS-Dsg2 -/- mice. We demonstrated that these phenotypes were caused by decline of fatty acid (FA) ß-oxidation resulted from impaired mammalian target of rapamycin (mTOR) signaling. Rapamycin worsened while overexpression of mTOR and 4EBP1 rescued the FA ß-oxidation pathway in CS-Dsg2 -/- mice. Reactivation of PPARα by fenofibrate or AAV9-Pparα significantly alleviated the lipid accumulation and restored cardiac function. Our results suggest that impaired mTOR-4EBP1-PPARα-dependent FA ß-oxidation contributes to myocardial lipid accumulation in ACM and PPARα may be a potential target for curative treatment of ACM.
RESUMEN
BACKGROUND: The gut microbial ecosystem is an important factor that regulates host health and the onset of chronic diseases, such as inflammatory bowel diseases, obesity, hyperlipidemia, and diabetes mellitus, which are important risk factors for atherosclerosis. However, the links among diet, microbiota composition, and atherosclerotic progression are unclear. METHODS AND RESULTS: Four-week-old mice (-/- mice, C57Bl/6) were randomly divided into two groups, namely, supplementation with culture medium (control, CTR) and Bacteroides fragilis (BFS), and were fed a high-fat diet. The gut microbiota abundance in feces was evaluated using the 16S rDNA cloning library construction, sequencing, and bioinformatics analysis. The atherosclerotic lesion was estimated using Oil Red O staining. Levels of CD36, a scavenger receptor implicated in atherosclerosis, and F4/80, a macrophage marker in small intestine, were quantified by quantitative real-time PCR. Compared with the CTR group, the BFS group showed increased food intake, fasting blood glucose level, body weight, low-density lipoprotein level, and aortic atherosclerotic lesions. BFS dramatically reduced Lactobacillaceae (LAC) abundance and increased Desulfovibrionaceae (DSV) abundance. The mRNA expression levels of CD36 and F4/80 in small intestine and aorta tissue in the BFS group were significantly higher than those in the CTR group. CONCLUSIONS: gut microbiota dysbiosis was induced by BFS. It was characterized by reduced LAC and increased DSV abundance and led to the deterioration of glucose/lipid metabolic dysfunction and inflammatory response, which likely promoted aorta plaque formation and the progression of atherosclerosis.
Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Microbioma Gastrointestinal , Animales , Aorta/metabolismo , Enfermedades de la Aorta/genética , Aterosclerosis/metabolismo , Bacteroides fragilis , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Disbiosis/metabolismo , Ecosistema , Microbioma Gastrointestinal/genética , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is associated with ventricular arrhythmia, heart failure (HF), and sudden death. Thromboembolism is also an important and serious complication of ARVC/D. However, the etiology of ARVC/D and thromboembolism and their association with genetic mutations are unclear. METHODS: Genomic DNA samples of peripheral blood were conducted for whole-exome sequencing (WES) and Sanger sequencing in the ARVC/D family. Then, we performed bioinformatics analysis for genes susceptible to cardiomyopathies and arrhythmias. Further, we analyzed how the potential pathogenic mutations were affecting the hydrophobicity and phosphorylation of amino acids and their joint pathogenicity by ProtScale, NetPhos and ORVAL algorisms. RESULTS: We discovered a Chinese Han family of ARVC/D with right ventricular HF (RVHF), cerebral thromboembolism, arrhythmias (atrial fibrillation, atrial standstill, multifocal ventricular premature, complete right bundle block and third-degree atrioventricular block) and sudden death. Based on the WES data, the variants of LMNA p.A242V, LAMA4 p.A225P and RYR2 p.T858M are highly conserved and predicated as "deleterious" by SIFT and MetaSVM algorithms. Their CADD predicting scores are 33, 27.4 and 25.8, respectively. These variants increase the hydrophobicity of their corresponding amino acid residues and their nearby sequences by 0.378, 0.266 and 0.289, respectively. The LAMA4 and RYR2 variants lead to changes in protein phosphorylation at or near their corresponding amino acid sites. There were high risks of joint pathogenicity for cardiomyopathy among these three variants. Cosegregation analysis indicated that LMNA p.A242V might be an important risk factor for ARVC/D, electrocardiogram abnormality and cerebral thromboembolism, while LAMA4 p.A225P may be a pathogenic etiology of ARVC/D and hereditary electrocardiogram abnormality. CONCLUSIONS: The LMNA p.A242V may participate in the pathogenesis of familial ARVC/D with RVHF and cerebral thromboembolism, while LAMA4 p.A225P may be associated with ARVC/D and hereditary electrocardiogram abnormality.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Insuficiencia Cardíaca , Tromboembolia , Aminoácidos , Displasia Ventricular Derecha Arritmogénica/genética , Muerte Súbita , Electrocardiografía , Insuficiencia Cardíaca/genética , Humanos , Lamina Tipo A/genética , Laminina/genética , Mutación/genética , Canal Liberador de Calcio Receptor de Rianodina , Tromboembolia/complicacionesRESUMEN
BACKGROUND: Brugada syndrome (Brs) and long QT syndrome (LQTs) are the most observed "inherited primary arrhythmia syndromes" and "channelopathies", which lead to sudden cardiac death. METHODS: Detailed clinical information of Brs and LQTs patients was collected. Genomic DNA samples of peripheral blood were conducted for whole-exome sequencing on the Illumina HiSeq 2000 platform. Then, we performed bioinformatics analysis for 200 genes susceptible to arrhythmias and cardiomyopathies. Protein interaction and transcriptomic co-expression were analyzed using the online website and GTEx database. RESULTS: All sixteen cases of Brs and six cases of LQTs were enrolled in the current study. Four Brs carried known pathogenic or likely pathogenic of single-point mutations, including SCN5A p.R661W, SCN5A p.R965C, and KCNH2 p.R692Q. One Brs carried the heterozygous compound mutations of DSG2 p.F531C and SCN5A p.A1374S. Two Brs carried the novel heterozygous truncated mutations (MAF < 0.001) of NEBL (p.R882X) and NPPA (p.R107X), respectively. Except for the indirect interaction between NEBL and SCN5A, NPPA directly interacts with SCN5A. These gene expressions had a specific and significant positive correlation in myocardial tissue, with high degrees of co-expression and synergy. Two Brs carried MYH7 p.E1902Q and MYH6 p.R1820Q, which were predicted as "damaging/possibly damaging" and "damaging/damaging" by Polyphen and SIFT algorithm. Two LQTs elicited the pathogenic single splicing mutation of KCNQ1 (c.922-1G > C). Three LQTs carried a single pathogenic mutation of SCN5A p.R1880H, KCNH2 p.D161N, and KCNQ1 p.R243S, respectively. One patient of LQTs carried a frameshift mutation of KCNH2 p. A188Gfs*143. CONCLUSIONS: The truncated mutations of NEBL (p.R882X) and NPPA (p.R107X) may induce Brugada syndrome by abnormally affecting cardiac sodium channel. SCN5A (p.R661W, p.R965C and p.A1374S) and KCNH2 (p.R692Q) may cause Brugada syndrome, while SCN5A (p.R1880H), KCNQ1 (c.922-1G > C and p.R243S) and KCNH2 (p.D161N and p.A188Gfs*143) may lead to long QT syndrome.
Asunto(s)
Síndrome de Brugada , Síndrome de QT Prolongado , Humanos , Canal de Potasio KCNQ1/genética , Síndrome de Brugada/genética , Secuenciación del Exoma , Canal de Potasio ERG1/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Síndrome de QT Prolongado/genética , Mutación/genéticaRESUMEN
OBJECTIVE: The aim of this study was to investigate the efficiency and safety of ibutilide for cardioversion of persistent atrial fibrillation (AF) during radiofrequency ablation. METHODS: Eighteen patients (16 males) with persistent atrial fibrillation were enrolled in this study. All patients underwent circumferential pulmonary vein ablation guided by a Carto three-dimensional mapping system. In addition, linear ablation at the top of the left atrium and the isthmus of mitral valves and complex fractionated atrial electrogram (CAFE) ablation were performed. All patients were still in either atrial fibrillation or atrial flutter after ablation, the patients were treated with 1 mg intravenous ibutilide injection within 10 minutes after unsuccessful ablation. Intravenous injection was stopped in case of sinus rhythm (SR) restoration or occurrence of severe adverse reactions such as ventricular tachycardia. Cardioversion rate within 30 min and adverse reactions within 4 h were observed. Patients were divided into either conversion group or non-conversion group according to whether AF was converted to sinus rhythm within 30 minutes after injection. RESULTS: Eleven patients (61.11%) converted to SR after ibutilide injection. There were no significant differences in gender, age, body mass index, left atrium and left ventricular function between conversion group and non-conversion groups. The average conversion time was (13.80 ± 7.64) min, left atrium scar area ratio was significantly larger in non-conversion group (12.40 ± 11.03)% than in conversion group (5.12 ± 3.83)%, P < 0.05. Ibutilide significantly prolonged the average wavelength of the AF wave (171.8 ± 29.5) ms vs. (242.0 ± 40.0) ms at baseline, P < 0.01. The QT interval at 30 min after ibutilide injection (0.39 ± 0.21) s was significantly longer than before injection (0.51 ± 0.08) s, P < 0.05. There was no serious arrhythmias or other adverse reactions post ibutilide injection. CONCLUSIONS: Ibutilide is highly effective and safe agent for cardioversion in patients underwent unsuccessful ablation. Left atrium scar area ratio is an important determinant for the conversion rate in this cohort.