Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(2): e17201, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385993

RESUMEN

Globally increased nitrogen (N) to phosphorus (P) ratios (N/P) affect the structure and functioning of terrestrial ecosystems, but few studies have addressed the variation of foliar N/P over time in subtropical forests. Foliar N/P indicates N versus P limitation in terrestrial ecosystems. Quantifying long-term dynamics of foliar N/P and their potential drivers is crucial for predicting nutrient status and functioning in forest ecosystems under global change. We detected temporal trends of foliar N/P, quantitatively estimated their potential drivers and their interaction between plant types (evergreen vs. deciduous and trees vs. shrubs), using 1811 herbarium specimens of 12 widely distributed species collected during 1920-2010 across China's subtropical forests. We found significant decreases in foliar P concentrations (23.1%) and increases in foliar N/P (21.2%). Foliar N/P increased more in evergreen species (22.9%) than in deciduous species (16.9%). Changes in atmospheric CO2 concentrations ( P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ ), atmospheric N deposition and mean annual temperature (MAT) dominantly contributed to the increased foliar N/P of evergreen species, while P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ , MAT, and vapor pressure deficit, to that of deciduous species. Under future Shared Socioeconomic Pathway (SSP) scenarios, increasing MAT and P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ would continuously increase more foliar N/P in deciduous species than in evergreen species, with more 12.9%, 17.7%, and 19.4% versus 6.1%, 7.9%, and 8.9% of magnitudes under the scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5, respectively. The results suggest that global change has intensified and will progressively aggravate N-P imbalance, further altering community composition and ecosystem functioning of subtropical forests.


Asunto(s)
Ecosistema , Bosques , Nitrógeno , Fósforo , China
2.
Trends Parasitol ; 40(3): 214-229, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38355313

RESUMEN

RNA modifications (epitranscriptome) - such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ) - modulate RNA processing, stability, interaction, and translation, thereby playing critical roles in the development, replication, virulence, metabolism, and life cycle adaptations of parasitic protozoa. Here, we summarize potential homologs of the major human RNA modification regulatory factors in parasites, outline current knowledge on how RNA modifications affect parasitic protozoa, highlight the regulation of RNA modifications and their crosstalk, and discuss current progress in exploring RNA modifications as potential drug targets. This review contributes to our understanding of epitranscriptomic regulation of parasitic protozoa biology and pathogenesis and provides new perspectives for the treatment of parasitic diseases.


Asunto(s)
Parásitos , Animales , Humanos , Parásitos/genética , Transcriptoma , ARN/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Biología
3.
iScience ; 27(6): 109961, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947504

RESUMEN

The causality between circulating proteins and thyroid cancer (TC) remains unclear. We employed five large-scale circulating proteomic genome-wide association studies (GWASs) with up to 100,000 participants and a TC meta-GWAS (nCase = 3,418, nControl = 292,703) to conduct proteome-wide Mendelian randomization (MR) and Bayesian colocalization analysis. Protein and gene expressions were validated in thyroid tissue. Through MR analysis, we identified 26 circulating proteins with a putative causal relationship with TCs, among which NANS protein passed multiple corrections (P BH = 3.28e-5, 0.05/1,525). These proteins were involved in amino acids and organic acid synthesis pathways. Colocalization analysis further identified six proteins associated with TCs (VCAM1, LGMN, NPTX1, PLEKHA7, TNFAIP3, and BMP1). Tissue validation confirmed BMP1, LGMN, and PLEKHA7's differential expression between normal and TC tissues. We found limited evidence for linking circulating proteins and the risk of TCs. Our study highlighted the contribution of proteins, particularly those involved in amino acid metabolism, to TCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA