Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 170(2): 324-339.e23, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28709000

RESUMEN

Alternative splicing (AS) patterns have diverged rapidly during vertebrate evolution, yet the functions of most species- and lineage-specific splicing events are not known. We observe that mammalian-specific AS events are enriched in transcript sequences encoding intrinsically disordered regions (IDRs) of proteins, in particular those containing glycine/tyrosine repeats that mediate formation of higher-order protein assemblies implicated in gene regulation and human disease. These evolutionary changes impact nearly all members of the hnRNP A and D families of RNA binding proteins. Regulation of these events requires formation of unusual, long-range mammalian-specific RNA duplexes. Differential inclusion of the alternative exons controls the formation of tyrosine-dependent multivalent hnRNP assemblies that, in turn, function to globally regulate splicing. Together, our results demonstrate that AS control of IDR-mediated interactions between hnRNPs represents an important and recurring mechanism underlying splicing regulation. Furthermore, this mechanism has expanded the regulatory capacity of mammalian cells.


Asunto(s)
Empalme Alternativo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Mamíferos/genética , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Humanos , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Precursores del ARN/metabolismo , Alineación de Secuencia , Vertebrados/genética , Vertebrados/metabolismo
2.
Mol Cell ; 83(23): 4222-4238.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065061

RESUMEN

Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Exones/genética , Intrones , ARN
3.
Mol Cell ; 83(15): 2792-2809.e9, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478847

RESUMEN

To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Humanos , Mutación , Reparación del ADN , Fenotipo
4.
Mol Cell ; 83(6): 974-993.e15, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931259

RESUMEN

14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.


Asunto(s)
Proteínas 14-3-3 , Proteínas HSP90 de Choque Térmico , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Unión Proteica
5.
Cell ; 163(6): 1484-99, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638075

RESUMEN

The centrosome is the primary microtubule organizing center of the cells and templates the formation of cilia, thereby operating at a nexus of critical cellular functions. Here, we use proximity-dependent biotinylation (BioID) to map the centrosome-cilium interface; with 58 bait proteins we generate a protein topology network comprising >7,000 interactions. Analysis of interaction profiles coupled with high resolution phenotypic profiling implicates a number of protein modules in centriole duplication, ciliogenesis, and centriolar satellite biogenesis and highlights extensive interplay between these processes. By monitoring dynamic changes in the centrosome-cilium protein interaction landscape during ciliogenesis, we also identify satellite proteins that support cilia formation. Systematic profiling of proximity interactions combined with functional analysis thus provides a rich resource for better understanding human centrosome and cilia biology. Similar strategies may be applied to other complex biological structures or pathways.


Asunto(s)
Centrosoma/metabolismo , Cilios/metabolismo , Mapas de Interacción de Proteínas , Biotinilación , Ciclo Celular , Humanos , Centro Organizador de los Microtúbulos/metabolismo
6.
Mol Cell ; 82(3): 677-695.e7, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35016035

RESUMEN

Transcription is orchestrated by thousands of transcription factors (TFs) and chromatin-associated proteins, but how these are causally connected to transcriptional activation is poorly understood. Here, we conduct an unbiased proteome-scale screen to systematically uncover human proteins that activate transcription in a natural chromatin context. By combining interaction proteomics and chemical inhibitors, we delineate the preference of these transcriptional activators for specific co-activators, highlighting how even closely related TFs can function via distinct cofactors. We also identify potent transactivation domains among the hits and use AlphaFold2 to predict and experimentally validate interaction interfaces of two activation domains with BRD4. Finally, we show that many novel activators are partners in fusion events in tumors and functionally characterize a myofibroma-associated fusion between SRF and C3orf62, a potent p300-dependent activator. Our work provides a functional catalog of potent transactivators in the human proteome and a platform for discovering transcriptional regulators at genome scale.


Asunto(s)
Proteoma , Proteómica , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células K562 , Ratones , Miofibroma/genética , Miofibroma/metabolismo , Células 3T3 NIH , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/genética
7.
Mol Cell ; 82(5): 1035-1052.e9, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182477

RESUMEN

The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.


Asunto(s)
Núcleo Celular , Proteínas de Unión al ARN , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Humanos , Intrones/genética , Empalme del ARN , Proteínas de Unión al ARN/genética
8.
Cell ; 158(2): 434-448, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036637

RESUMEN

Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of cofactors (cochaperones) that regulate their specificity and function. However, how these cochaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone-cochaperone-client interaction network in human cells. We uncover hundreds of chaperone clients, delineate their participation in specific cochaperone complexes, and establish a surprisingly distinct network of protein-protein interactions for cochaperones. As a salient example of the power of such analysis, we establish that NUDC family cochaperones specifically associate with structurally related but evolutionarily distinct ß-propeller folds. We provide a framework for deciphering the proteostasis network and its regulation in development and disease and expand the use of chaperones as sensors for drug-target engagement.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mapas de Interacción de Proteínas , Humanos , Pliegue de Proteína , Proteínas de Unión a Tacrolimus/metabolismo
9.
Mol Cell ; 81(12): 2549-2565.e8, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33957083

RESUMEN

Hsp70s comprise a deeply conserved chaperone family that has a central role in maintaining protein homeostasis. In humans, Hsp70 client specificity is provided by 49 different co-factors known as J domain proteins (JDPs). However, the cellular function and client specificity of JDPs have largely remained elusive. We have combined affinity purification-mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID) to characterize the interactome of all human JDPs and Hsp70s. The resulting network suggests specific functions for many uncharacterized JDPs, and we establish a role of conserved JDPs DNAJC9 and DNAJC27 in histone chaperoning and ciliogenesis, respectively. Unexpectedly, we find that the J domain of DNAJC27 but not of other JDPs can fully replace the function of endogenous DNAJC27, suggesting a previously unappreciated role for J domains themselves in JDP specificity. More broadly, our work expands the role of the Hsp70-regulated proteostasis network and provides a platform for further discovery of JDP-dependent functions.


Asunto(s)
Proteínas del Choque Térmico HSP40/fisiología , Proteínas HSP70 de Choque Térmico/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Células HEK293 , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Unión al GTP rab/metabolismo
10.
Mol Cell ; 73(3): 621-638.e17, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554943

RESUMEN

Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1.


Asunto(s)
Antineoplásicos/farmacología , Azepinas/farmacología , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Antineoplásicos/química , Azepinas/química , Proteínas de Ciclo Celular , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células K562 , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triazoles/química
11.
Mol Syst Biol ; 20(6): 719-740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580884

RESUMEN

Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.


Asunto(s)
Mutación , Estabilidad Proteica , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , Ratones , Femenino , Sistemas CRISPR-Cas , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
12.
Nat Chem Biol ; 18(12): 1370-1379, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35970996

RESUMEN

Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.


Asunto(s)
Antineoplásicos , Compuestos de Pirvinio , Humanos , Compuestos de Pirvinio/farmacología , Vía de Señalización Wnt , Antineoplásicos/farmacología , Genómica
13.
Nature ; 560(7716): 117-121, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022168

RESUMEN

53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.


Asunto(s)
Reparación del ADN , Complejos Multiproteicos/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/genética , Femenino , Genes BRCA1 , Humanos , Cambio de Clase de Inmunoglobulina/genética , Ratones , Modelos Biológicos , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión a Telómeros/metabolismo , Proteína p53 Supresora de Tumor/deficiencia
14.
Mol Cell ; 61(3): 405-418, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26774285

RESUMEN

DNA double-strand break repair by homologous recombination is initiated by the formation of 3' single-stranded DNA (ssDNA) overhangs by a process termed end resection. Although much focus has been given to the decision to initiate resection, little is known of the mechanisms that regulate the ongoing formation of ssDNA tails. Here we report that DNA helicase B (HELB) underpins a feedback inhibition mechanism that curtails resection. HELB is recruited to ssDNA by interacting with RPA and uses its 5'-3' ssDNA translocase activity to inhibit EXO1 and BLM-DNA2, the nucleases catalyzing resection. HELB acts independently of 53BP1 and is exported from the nucleus as cells approach S phase, concomitant with the upregulation of resection. Consistent with its role as a resection antagonist, loss of HELB results in PARP inhibitor resistance in BRCA1-deficient tumor cells. We conclude that mammalian DNA end resection triggers its own inhibition via the recruitment of HELB.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Helicasas/metabolismo , Neoplasias Mamarias Experimentales/enzimología , Animales , Proteína BRCA1/genética , ADN Helicasas/deficiencia , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Fase S , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética
15.
PLoS Biol ; 17(7): e3000358, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283755

RESUMEN

Hsp90 is a conserved molecular chaperone that assists in the folding and function of diverse cellular regulators, with a profound impact on biology, disease, and evolution. As a central hub of protein interaction networks, Hsp90 engages with hundreds of protein-protein interactions within eukaryotic cells. These interactions include client proteins, which physically interact with Hsp90 and depend on the chaperone for stability or function, as well as co-chaperones and partner proteins that modulate chaperone function. Currently, there are no methods to accurately predict Hsp90 interactors and there has been considerable network rewiring over evolutionary time, necessitating experimental approaches to define the Hsp90 network in the species of interest. This is a pressing challenge for fungal pathogens, for which Hsp90 is a key regulator of stress tolerance, drug resistance, and virulence traits. To address this challenge, we applied a novel biochemical fractionation and quantitative proteomic approach to examine alterations to the proteome upon perturbation of Hsp90 in a leading human fungal pathogen, Candida albicans. In parallel, we performed affinity purification coupled to mass spectrometry to define physical interacting partners for Hsp90 and the Hsp90 co-chaperones and identified 164 Hsp90-interacting proteins, including 111 that are specific to the pathogen. We performed the first analysis of the Hsp90 interactome upon antifungal drug stress and demonstrated that Hsp90 stabilizes processing body (P-body) and stress granule proteins that contribute to drug tolerance. We also describe novel roles for Hsp90 in regulating posttranslational modification of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex and the formation of protein aggregates in response to thermal stress. This study provides a global view of the Hsp90 interactome in a fungal pathogen, demonstrates the dynamic role of Hsp90 in response to environmental perturbations, and highlights a novel connection between Hsp90 and the regulation of mRNA-associated protein granules.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteómica/métodos , Candida albicans/genética , Candida albicans/patogenicidad , Candidiasis/microbiología , Proteínas Fúngicas/genética , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Humanos , Microscopía Confocal , Chaperonas Moleculares/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , Proteoma/genética , Proteoma/metabolismo , Virulencia/genética
16.
Mol Cell ; 56(1): 90-103, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25219497

RESUMEN

The vertebrate and neural-specific Ser/Arg (SR)-related protein nSR100/SRRM4 regulates an extensive program of alternative splicing with critical roles in nervous system development. However, the mechanism by which nSR100 controls its target exons is poorly understood. We demonstrate that nSR100-dependent neural exons are associated with a unique configuration of intronic cis-elements that promote rapid switch-like regulation during neurogenesis. A key feature of this configuration is the insertion of specialized intronic enhancers between polypyrimidine tracts and acceptor sites that bind nSR100 to potently activate exon inclusion in neural cells while weakening 3' splice site recognition and contributing to exon skipping in nonneural cells. nSR100 further operates by forming multiple interactions with early spliceosome components bound proximal to 3' splice sites. These multifaceted interactions achieve dominance over neural exon silencing mediated by the splicing regulator PTBP1. The results thus illuminate a widespread mechanism by which a critical neural exon network is activated during neurogenesis.


Asunto(s)
Empalme Alternativo , Exones , Modelos Genéticos , Neurogénesis/genética , Animales , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Motivos de Nucleótidos
17.
PLoS Genet ; 15(1): e1007901, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615616

RESUMEN

Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis.


Asunto(s)
Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Candida albicans/patogenicidad , Hongos/genética , Hongos/patogenicidad , Regulación Fúngica de la Expresión Génica , Humanos , Hifa/genética , Hifa/patogenicidad , Morfogénesis/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
19.
EMBO Rep ; 18(1): 28-38, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27974379

RESUMEN

Pseudouridylation is a common post-transcriptional modification in RNA, but its functional consequences at the cellular level remain largely unknown. Using a proximity-biotinylation assay, we identified a protein module in mitochondrial RNA granules, platforms for post-transcriptional RNA modification and ribosome assembly, containing several proteins of unknown function including three uncharacterized pseudouridine synthases, TRUB2, RPUSD3, and RPUSD4. TRUB2 and RPUSD4 were previously identified as core essential genes in CRISPR/Cas9 screens. Depletion of the individual enzymes produced specific mitochondrial protein synthesis and oxidative phosphorylation assembly defects without affecting mitochondrial mRNA levels. Investigation of the molecular targets in mitochondrial RNA by pseudouridine-Seq showed that RPUSD4 plays a role in the pseudouridylation of a single residue in the 16S rRNA, a modification that is essential for its stability and assembly into the mitochondrial ribosome, while TRUB2/RPUSD3 were similarly involved in pseudouridylating specific residues in mitochondrial mRNAs. These results establish essential roles for epitranscriptomic modification of mitochondrial RNA in mitochondrial protein synthesis, oxidative phosphorylation, and cell survival.


Asunto(s)
Supervivencia Celular , Transferasas Intramoleculares/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas Portadoras , Línea Celular , Humanos , Unión Proteica , Transporte de Proteínas , ARN/genética , ARN/metabolismo , Transporte de ARN , ARN Mitocondrial , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo
20.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26121405

RESUMEN

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Asunto(s)
Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Cromatina/química , Inmunoprecipitación/métodos , Proteómica/métodos , Clonación Molecular , Biología Computacional/métodos , Escherichia coli/metabolismo , Células HEK293 , Humanos , Fragmentos de Inmunoglobulinas/química , Inmunoglobulina G/química , Espectrometría de Masas/métodos , Biblioteca de Péptidos , Proteínas/química , Proteoma , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA