Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 189(2): 56, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28091884

RESUMEN

The risks to wildlife and humans from uranium (U) mining in the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This study characterizes the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathology in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine. Gross alpha levels were below the reporting limit (4 pCi/g) in all samples, and gross beta levels were indicative of background in vegetation (<10-17 pCi/g) and rodents (<10-43.5 pCi/g). Concentrations of U, Tl, Pb, Ni, Cu, and As in vegetation downwind from the mine were likely the result of aeolian transport. Chemical concentrations in rodents and terrestrial invertebrates indicate that surface disturbance during mine construction has not resulted in statistically significant spatial differences in fauna concentrations adjacent to the mine. Chemical concentrations in egg contents and nestlings of non-aquatic birds were less than method quantification limits or did not exceed toxicity thresholds. Bioaccumulation of As, Pb, Se, Tl, and U was evident in Western spadefoot (Spea multiplicata) tadpoles from the mine containment pond; concentrations of As (28.9-31.4 µg/g) and Se (5.81-7.20 µg/g) exceeded toxicity values and were significantly greater than in tadpoles from a nearby water source. Continued evaluation of As and Se in biota inhabiting and forging in the mine containment pond is warranted as mining progresses.


Asunto(s)
Minería , Monitoreo de Radiación , Oligoelementos/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis , Animales , Arizona , Arsénico/análisis , Biota , Cadmio/análisis , Cobre , Humanos , Mercurio/análisis , Níquel , Exposición a la Radiación , Selenio , Talio/análisis , Zinc/análisis
2.
Arch Environ Contam Toxicol ; 65(2): 332-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23604138

RESUMEN

Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.


Asunto(s)
Dipodomys , Contaminantes del Suelo/química , Contaminantes del Suelo/toxicidad , Suelo/química , Uranio , Animales , Arizona , Monitoreo del Ambiente , Residuos Industriales , Minería , Oligoelementos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA